Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.041
Filtrar
1.
Bioact Mater ; 22: 423-452, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36311050

RESUMO

Osteoarthritis (OA) is a highly prevalent whole-joint disease that causes disability and pain and affects a patient's quality of life. However, currently, there is a lack of effective early diagnosis and treatment. Although stem cells can promote cartilage repair and treat OA, problems such as immune rejection and tumorigenicity persist. Extracellular vesicles (EVs) can transmit genetic information from donor cells and mediate intercellular communication, which is considered a functional paracrine factor of stem cells. Increasing evidences suggest that EVs may play an essential and complex role in the pathogenesis, diagnosis, and treatment of OA. Here, we introduced the role of EVs in OA progression by influencing inflammation, metabolism, and aging. Next, we discussed EVs from the blood, synovial fluid, and joint-related cells for diagnosis. Moreover, we outlined the potential of modified and unmodified EVs and their combination with biomaterials for OA therapy. Finally, we discuss the deficiencies and put forward the prospects and challenges related to the application of EVs in the field of OA.

2.
Oral Maxillofac Surg Clin North Am ; 35(1): 37-48, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336596

RESUMO

Orthognathic surgery is an effective approach to correct vertical maxillary excess (VME), which is a common maxillofacial deformity and exhibits excessive vertical development of maxilla. This review summarizes different clinical features of total, anterior and posterior VME, as well as corresponding surgical managements guided by preoperative computer-assisted surgical planning. The virtual simulation will do favor to the final determination of individual surgical plans to achieve satisfactory outcomes. Finally, a typical clinical case will be presented to demonstrate the surgical management of VME.


Assuntos
Maxila , Procedimentos Cirúrgicos Ortognáticos , Humanos , Maxila/cirurgia , Osteotomia de Le Fort , Cefalometria
3.
J Environ Manage ; 325(Pt B): 116605, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36347187

RESUMO

Fertilization changes the soil organic carbon (SOC) composition, affecting the carbon cycle of paddy soil. Understanding the mechanisms of physical fraction and chemical composition of SOC responding to fertilization can help regulate the nutrient release and carbon sequestration. However, it is unclear whether these changes in SOC composition to fertilization are consistent and how these are regulated by biotic and abiotic properties. Therefore, a positioning experiment in a rice field was conducted with a total of nine treatments. Chemical fertilizers (0, 337.5, and 675 kg ha-1; C0, C50, and C100, respectively) and fungal residue (0, 10,000, and 20,000 kg ha-1; F0, F50, and F100, respectively) were applied to evaluated (i) changes in the physical fraction and chemical composition of SOC, (ii) changes in soil properties, microbial biomass and community, and (iii) establish relationships among soil properties, microbial community, microbial biomass, and SOC composition. Our results showed that the application of fungal residue exhibited more significant effects on SOC physical fractions than those with the chemical fertilizers. Furthermore, the chemical composition of SOC was more respond to the application of chemical fertilizers than fungal residue. The partial least squares path model indicated that soil properties mainly affected the mineral-associated organic carbon (MAOC) by microbial biomass. In addition, bacterial diversity played an important role in improving the accumulation of MAOC. The SOC chemical composition was mediated by fungal community composition and bacterial diversity. In conclusion, fungal residue application affected SOC physical fraction by increasing soil properties, microbial biomass, and bacterial diversity. Chemical fertilizers application mainly mediated the chemical composition of SOC by altering fungal community composition and decreasing bacterial diversity.


Assuntos
Oryza , Solo , Solo/química , Carbono/química , Fertilizantes/análise , Agricultura/métodos , Microbiologia do Solo , Oryza/química , Minerais , Fertilização
4.
J Chem Phys ; 157(17): 174701, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36347684

RESUMO

Density functional theory calculations are combined with time-resolved photoluminescence experiments to identify the species responsible for the reversible trapping of holes following photoexcitation of InP/ZnSe/ZnS core/shell/shell quantum dots (QDs) having excess indium in the shell [P. Cavanaugh et al., J. Chem. Phys. 155, 244705 (2021)]. Several possible assignments are considered, and a substitutional indium adjacent to a zinc vacancy, In3+/VZn 2-, is found to be the most likely. This assignment is consistent with the observation that trapping occurs only when the QD has excess indium and is supported by experiments showing that the addition of zinc oleate or acetate decreases the extent of trapping, presumably by filling some of the vacancy traps. We also show that the addition of alkyl carboxylic acids causes increased trapping, presumably by the creation of additional zinc vacancies. The calculations show that either a single In2+ ion or an In2+-In3+ dimer is much too easily oxidized to form the reversible traps observed experimentally, while In3+ is far too difficult to oxidize. Additional experimental data on InP/ZnSe/ZnS QDs synthesized in the absence of chloride demonstrates that the reversible traps are not associated with Cl-. However, a zinc vacancy adjacent to a substitutional indium is calculated to have its highest occupied orbitals about 1 eV above the top of the valence band of bulk ZnSe, in the appropriate energy range to act as reversible traps for quantum confined holes in the InP valence band. The associated orbitals are predominantly composed of p orbitals on the Se atoms adjacent to the Zn vacancy.

5.
Front Immunol ; 13: 1005307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420273

RESUMO

Diabetes is the most prevalent metabolic disease in the world today. In addition to elevated blood glucose, it also causes serious complications, which has a significant effect on the quality of life of patients. Diabetic trauma is one of complications as a result of the interaction of diabetic neuropathy, peripheral vascular disease, infection, trauma, and other factors. Diabetic trauma usually leads to poor healing of the trauma and even to severe foot ulcers, wound gangrene, and even amputation, causing serious psychological, physical, and financial burdens to diabetic patients. Non-coding RNAs (ncRNAs) carried by exosomes have been demonstrated to be relevant to the development and treatment of diabetes and its complications. Exosomes act as vehicle, which contain nucleic acids such as mRNA and microRNA (miRNA), and play a role in the intercellular communication and the exchange of substances between cells. Because exosomes are derived from cells, there are several advantages over synthetic nanoparticle including good biocompatibility and low immunogenicity. Exosomal ncRNAs could serve as markers for the clinical diagnosis of diabetes and could also be employed to accelerate diabetic wound healing via the regulation of the immune response and modulation of cell function. ncRNAs in exosomes can be employed to promote diabetic wound healing by regulating inflammation and accelerating re-vascularization, re-epithelialization, and extracellular matrix remodeling. Herein, exosomes in terms of ncRNA (miRNA, lncRNA, and circRNA) to accelerate diabetic wounds healing were summarized, and we discussed the challenge of the loading strategy of ncRNA into exosomes.


Assuntos
Diabetes Mellitus , Exossomos , MicroRNAs , Humanos , Qualidade de Vida , Cicatrização/genética , Diabetes Mellitus/metabolismo , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
6.
Small ; : e2205474, 2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36372550

RESUMO

Ultrasmall nanoparticles (NPs) are a promising platform for the diagnosis and therapy of cancer, but the particles in sizes as small as several nanometers have an ability to translocate across biological barriers, which may bring unpredictable health risks. Therefore, it is essential to develop workable cell-based tools that can deliver ultrasmall NPs to the tumor in a safer manner. Here, this work uses macrophages as a shuttle to deliver sub-5 nm PEGylated gold (Au) NPs to tumors actively or passively, while reducing the accumulation of Au NPs in the brain. This work demonstrates that sub-5 nm Au NPs can be rapidly exocytosed from live macrophages, reaching 45.6% within 24 h, resulting in a labile Au NP-macrophage system that may release free Au NPs into the blood circulation in vivo. To overcome this shortcoming, two straightforward methods are used to engineer macrophages to obtain "half-dead" and "dead" macrophages. Although the efficiency of engineered macrophages for delivering sub-5 nm Au NPs to tumors is 2.2-3.8% lower than that of free Au NPs via the passive enhanced permeability and retention effect, this safe-by-design approach can dramatically reduce the accumulation of Au NPs in the brain by more than one order of magnitude. These promising approaches offer an opportunity to expand the immune cell- or stem cell-mediated delivery of ultrasmall NPs for the diagnosis and therapy of diseases in a safer way in the future.

7.
Materials (Basel) ; 15(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36363421

RESUMO

The hybrid optimization of modern cementitious materials requires concrete to meet many competing objectives (e.g., mechanical properties, cost, workability, environmental requirements, and durability). This paper reviews the current literature on optimizing mixing ratios using machine learning and metaheuristic optimization algorithms based on past studies on varying methods. In this review, we first discuss the conventional methods for mixing optimization of cementitious materials. Then, the problem expression of hybrid optimization is discussed, including decision variables, constraints, machine learning algorithms for modeling objectives, and metaheuristic optimization algorithms for searching the best mixture ratio. Finally, we explore the development prospects of this field, including, expanding the database by combining field data, considering more influencing variables, and considering more competitive targets in the production of functional cemented materials. In addition, to overcome the limitation of the swarm intelligence-based multi-objective optimization (MOO) algorithm in hybrid optimization, this paper proposes a new MOO algorithm based on individual intelligence (multi-objective beetle antenna search algorithm). The development of computationally efficient robust MOO models will continue to make progress in the field of hybrid optimization. This review is adapted for engineers and researchers who want to optimize the mixture proportions of cementitious materials using machine learning and metaheuristic algorithms.

8.
Front Cardiovasc Med ; 9: 1022658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386363

RESUMO

Background: Heart failure (HF) is a serious end-stage condition of various heart diseases with increasing frequency. Few studies have combined clinical features with high-throughput echocardiographic data to assess the risk of major cardiovascular events (MACE) in patients with heart failure. In this study, we assessed the relationship between these factors and heart failure to develop a practical and accurate prognostic dynamic nomogram model to identify high-risk groups of heart failure and ultimately provide tailored treatment options. Materials and methods: We conducted a prospective study of 468 patients with heart failure and established a clinical predictive model. Modeling to predict risk of MACE in heart failure patients within 6 months after discharge obtained 320 features including general clinical data, laboratory examination, 2-dimensional and Doppler measurements, left ventricular (LV) and left atrial (LA) speckle tracking echocardiography (STE), and left ventricular vector flow mapping (VFM) data, were obtained by building a model to predict the risk of MACE within 6 months of discharge for patients with heart failure. In addition, the addition of machine learning models also confirmed the necessity of increasing the STE and VFM parameters. Results: Through regular follow-up 6 months after discharge, MACE occurred in 156 patients (33.3%). The prediction model showed good discrimination C-statistic value, 0.876 (p < 0.05), which indicated good identical calibration and clinical efficacy. In multiple datasets, through machine learning multi-model comparison, we found that the area under curve (AUC) of the model with VFM and STE parameters was higher, which was more significant with the XGboost model. Conclusion: In this study, we developed a prediction model and nomogram to estimate the risk of MACE within 6 months of discharge among patients with heart failure. The results of this study can provide a reference for clinical physicians for detection of the risk of MACE in terms of clinical characteristics, cardiac structure and function, hemodynamics, and enable its prompt management, which is a convenient, practical and effective clinical decision-making tool for providing accurate prognosis.

9.
ACS Nano ; 16(11): 17708-17728, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36354375

RESUMO

The piezoelectric effect has been widely observed in biological systems, and its applications in biomedical field are emerging. Recent advances of wearable and implantable biomedical devices bring promise as well as requirements for the piezoelectric materials building blocks. Owing to their biocompatibility, biosafety, and environmental sustainability, natural piezoelectric biomaterials are known as a promising candidate in this emerging field, with a potential to replace conventional piezoelectric ceramics and synthetic polymers. Herein, we provide a thorough review of recent progresses of research on five major types of piezoelectric biomaterials including amino acids, peptides, proteins, viruses, and polysaccharides. Our discussion focuses on their structure- and phase-related piezoelectric properties and fabrication strategies to achieve desired piezoelectric phases. We compare and analyze their piezoelectric performance and further introduce and comment on the approaches to improve their piezoelectric property. Representative biomedical applications of this group of functional biomaterials including energy harvesting, sensing, and tissue engineering are also discussed. We envision that molecular-level understanding of the piezoelectric effect, piezoelectric response improvement, and large-scale manufacturing are three main challenges as well as research and development opportunities in this promising interdisciplinary field.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Polímeros/química , Aminoácidos/química , Proteínas
10.
ACS Nano ; 16(11): 19165-19173, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36355571

RESUMO

Mesoporous carbon supported non-noble metals, as promising catalysts for boosting the oxygen reduction reaction (ORR) in metal-air batteries, usually face challenges of low activity and performance degradation caused by the catalyst detachment from carbon substrates. Herein, a one-stone-two-birds strategy is reported to simultaneously improve the ORR activity and anchor nanosized MnS catalysts on a mesoporous carbon framework via nitrogen (N) and sulfur (S) dopants (MnS/NS-C). Synchrotron-based X-ray absorption spectroscopy (XAS) confirms the existence of Mn-N and Mn-S bonds, which firmly anchor active MnS nanoparticles. Density functional theory (DFT) calculations reveal that the N, S codoping lowers the d-band center of Mn and optimizes ORR intermediate adsorption. An excellent ORR performance (the onset and half-wave potential of 1.07 and 0.91 V) and long-term durability are achieved for MnS/NS-C in alkaline media. The flexible Al-air battery, using MnS/NS-C as the cathode catalyst, shows a power density of 134.6 mW cm-2 in comparison to the Pt/C-based counterpart of 106.2 mW cm-2. This study constructs a stable interaction with non-noble catalysts and carbon substrates for enhancing catalytic activity and durability in metal-air batteries.

11.
Int J Biol Macromol ; 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36436595

RESUMO

Bone defects cause serious psychological and economic burden to patients. Artificially bone repairing materials bring hope to the treatment of bone defects. Electrospun technique has attracted great attention since it can fabricate fibers from nano- to micro- scale continuously. Scaffolds fabricated by electrospun can mimic the structure of extracellular matrix which is beneficial to cell adhesion and migration. Researches have showed that bioactive ions (such as silicon and calcium ions) can promote bone regeneration. In addition, physical cues can affect cellular behavior such as cell adhesion and differentiation. In this study, two kinds of calcium silicate - adopted poly (L-lactic acid) (CS-PLLA) electrospun scaffolds with random/aligned structures were prepared by electrospun to promote bone regeneration. The integration of CS nanowires improved the biological property of PLLA electrospun scaffolds. Furthermore, in vitro results indicated that aligned 1 wt% CS adopted PLLA (PCA1) electrospun scaffolds with better physical properties and facilitated cell adhesion, improved alkaline phosphate (ALP) activity and the expression of osteogenic genes (Osteopontin (OPN), Collagen type 1 (Col-1) and Bone morphogenetic protein-2 (BMP-2)) compared with random 1 wt% CS adopted PLLA (PCR1) electrospun scaffolds. In conclusion, the prepared PCA1 electrospun scaffolds might be a potential candidate for bone regeneration in defect areas.

12.
Cells ; 11(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36428982

RESUMO

During disease progression and bone metastasis, breast tumor cells interact with various types of bystander cells residing in the tumor microenvironment. Such interactions prompt tumor cell heterogeneity. We used successive co-culture as an experimental model to examine cancer-bystander cell interaction. RMCF7-2, a clone of the human breast cancer MCF-7 cells tagged with a red fluorescent protein, was tracked for morphologic, behavioral, and gene expression changes. Co-cultured with various types of hematopoietic cells, RMCF7-2 adopted stable changes to a rounded shape in suspension growth of red fluorescent cells, from which derivative clones displayed marked expressional changes of marker proteins, including reduced E-cadherin and estrogen receptor α, and loss of progesterone receptor. In a successive co-culture with bone marrow-derived mesenchymal stem/stromal cells, the red fluorescent clones in suspension growth changed once more, adopting an attachment growth, but in diversified shapes. Red fluorescent clones recovered from the second-round co-culture were heterogeneous in morphology, but retained the altered marker protein expression while displaying increased proliferation, migration, and xenograft tumor formation. Interaction with bystander cells caused permanent morphologic, growth behavioral, and gene expressional changes under successive co-culture, which is a powerful model for studying cancer cell heterogeneity during breast cancer progression and metastasis.


Assuntos
Neoplasias da Mama , Células-Tronco Mesenquimais , Humanos , Feminino , Células MCF-7 , Técnicas de Cocultura , Neoplasias da Mama/patologia , Medula Óssea/patologia , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
13.
Front Psychiatry ; 13: 1004945, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339846

RESUMO

Background: Major depressive disorder (MDD) is a heterogeneous and prevalent mental disorder associated with increased morbidity, disability, and mortality. However, its underlying mechanisms remain unclear. Materials and methods: All analyses were conducted based on integrated samples from the GEO database. Differential expression analysis, unsupervised consensus clustering analysis, enrichment analysis, and regulation network analysis were performed. Results: Mitogen-activated protein kinase (MAPK) signaling pathway was identified as an associated pathway in the development of MDD. From transcriptional signatures, we classified the MDD patients into two subgroups using unsupervised clustering and revealed 13 differential expression genes between subgroups, which indicates the probably relative complications. We further illustrated potential molecular mechanisms of MDD, including dysregulation in the neurotrophin signaling pathway, peptidyl-serine phosphorylation, and endocrine resistance. Moreover, we identified hub genes, including MAPK8, TP53, and HRAS in the maintenance of MDD. Furthermore, we demonstrated that the axis of miRNAs-TFs-HRAS/TP53/MAPK8 may play a critical role in MDD. Conclusion: Taken together, we demonstrated an overview of MAPK-related key genes in MDD, determined two molecular subtypes, and identified the key genes and core network that may contribute to the procession of MDD.

14.
Front Oncol ; 12: 943806, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439472

RESUMO

The immune system and the tumor have been at each other's throats for so long that the neoplasm has learned to avoid detection and avoid being attacked, which is called immune evasion. Malignant tumors, such as gastric cancer (GC), share the ability to evade the body's immune system as a defining feature. Immune evasion includes alterations to tumor-associated antigens (TAAs), antigen presentation mechanisms (APMs), and the tumor microenvironment (TME). While TAA and APM are simpler in nature, they both involve mutations or epigenetic regulation of genes. The TME is comprised of numerous cell types, cytokines, chemokines and extracellular matrix, any one of which might be altered to have an effect on the surrounding ecosystem. The NF-kB, MAPK, PI3K/AKT, JAK/STAT, Wnt/ß-catenin, Notch, Hippo and TGF-ß/Smad signaling pathways are all associated with gastric cancer tumor immune evasion. In this review, we will delineate the functions of these pathways in immune evasion.

15.
Chemistry ; 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36445795

RESUMO

Towards unexplored intermolecular n→π* interactions, presented herein are the synthesis, structure, self-assembly and function of a multicarbonyl-containing macrocycle calix[2]arene[2]barbiturate 1. X-ray single crystal diffraction reveals the presence of Cl···C=O interactions in CH2Cl2Ì1 host-guest complex and multiple intermolecular C=O···C=O interactions between molecules 1 in crystalline state. The intermolecular C=O···C=O interactions as attractive driving force led to unprecedented self-assembly of nanotube with diameter around 1.4 nm and inner surface engineered by aromatic rings. SEM and TEM images of the self-assembly of 1 demonstrated temperature-dependent morphologies which allows the observation of spheres at 25 °C and rods at 0 °C, respectively. XRD analysis indicated consistent hexagonal patterns in the self-assembly and single crystal lattice, indicating the nanotubes driven by C=O···C=O interactions constitute the basic structural architectures of both aggregates. The nanoscopic tubes (pores) formed in the rodlike single crystal engendering the separation of moving dyes were preliminarily investigated by a single-crystal chromatography and crystal-packed column chromatography.

16.
Clin Sci (Lond) ; 136(22): 1691-1710, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36377775

RESUMO

Lymph node (LN) metastasis affects both the management and prognosis of head and neck squamous cell carcinoma (HNSCC). Here, we explored the relationship between lymphatic metastasis and CEA family member 5 (CEACAM5), including its possible regulatory role in HNSCC. The levels of CEACAM5 in tissues from patients with HNSCC, with and without LN metastases, were assessed by transcriptome sequencing. The associations between CEACAM5 and the N stage of LN metastasis in HNSCC were predicted through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases and a pan-cancer analysis of CEACAM5 expression in 33 common human tumors was conducted. CEACAM5 levels were analyzed in tumor and normal tissue specimens from HNSCC patients and the correlation between CEACAM5 levels and prognosis was evaluated. The influence of CEACAM5 on cell proliferation, invasion, migration, and apoptosis was investigated in HNSCC cell lines, as were the downstream regulatory mechanisms. A mouse model of LN metastasis was constructed. CEACAM5 levels were significantly higher in HNSCC tissue without LN metastasis than in that with LN metastasis. Similar findings were obtained for the clinical specimens. CEACAM5 levels were associated with better clinical prognosis. CEACAM5 was found to inhibit the proliferation and migration and promote the apoptosis of HNSCC cells. A mouse xenograft model showed that CEACAM5 inhibited LN metastasis. In conclusions, CEACAM5 inhibited epithelial-mesenchymal transition (EMT) in HNSCC by reducing murine double minute 2 (MDM2) expression and thereby suppressing LN metastasis. CEACAM5 has potential as both a prognostic marker and a therapeutic target in HNSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Camundongos , Animais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Transição Epitelial-Mesenquimal/genética , Metástase Linfática , Neoplasias de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Prognóstico , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Antígeno Carcinoembrionário/genética , Antígeno Carcinoembrionário/metabolismo , Proteínas Ligadas por GPI/genética
17.
Front Genet ; 13: 844381, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212124

RESUMO

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, which is caused by pathogenic variants of G6PD that result in decreased G6PD activity, is an X-linked inherited inborn error of metabolism that occurs worldwide. Individuals with G6PD deficiency and heterozygous females with normal G6PD activity (i.e., all individuals with pathogenic G6PD variants) are at risk of developing hemolytic anemia under increased oxidative challenge. However, this risk can be minimized by timely diagnosis. Currently, two assays are used to diagnose G6PD deficiency in China: evaluation of enzymatic activity and targeted genotyping. In terms of identification of all individuals with pathogenic G6PD variants, the performance and cost of different diagnostic strategies (isolated or combined evaluation of G6PD activity and G6PD genotyping) can vary, and these factors should be comprehensively evaluated. In this study, we examined 555 infants (437 males and 118 females) who were positive for the newborn screening of G6PD deficiency. We first evaluated the diagnostic performances of enzymatic testing and targeted genotyping. Both assays attained 100% specificities and positive predictive values for both male and female infants. In contrast, the sensitivities and negative predictive values (NPVs) of the diagnostic tests were different for male and female infants. For male infants, the sensitivities were 99.8 and 98.3%, and the NPVs were 94.1% and 69.6%, for enzymatic testing and targeted genotyping, respectively. For female infants, the sensitivities were 62.5% and 97.9%, and the NPVs were 37.9% and 91.7%, for enzymatic testing and targeted genotyping, respectively. We also evaluated the cost of the five different diagnostic strategies. The combination of G6PD activity testing of all infants, followed by genotyping of female infants with normal G6PD activity, attained high diagnostic sensitivity (99.8%) at a low cost (8.60 USD per diagnosed case). In the future, simultaneous examination of G6PD activity and whole-exon or whole-gene G6PD sequencing could become a standard clinical practice. Our data provide references for clinical practice on the standardization of current and future interventions for G6PD deficiency in China.

18.
J Craniofac Surg ; 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36217236

RESUMO

BACKGROUND: Maxillary hypoplasia is common in patients with cleft lip and palate. In this study, the authors investigated the soft tissue changes in midfacial regions after anterior maxillary segmental distraction osteogenesis (AMSDO) in patients with cleft. METHODS: Eight patients with cleft lip and palate who underwent AMSDO were enrolled in this study. Spiral computed tomographic images were taken before surgery and 6-12 months after surgery to evaluate soft tissue changes after AMSDO. The midfacial area was divided into 6 regions of interest according to anatomical subunits. The average movements of each region were calculated using volumetric changes and preoperative region surface areas. RESULTS: The upper lip on both sides has the most anterior movement (5.22±0.86 and 5.14±0.84 mm), supracommissural regions have a little less movement (4.11±0.55 and 3.81±0.67 mm), paranasal regions have the least movement (3.37±0.47 and 3.15±0.36 mm). The corresponding regions of interest showed no significant difference on the cleft side versus the noncleft side. CONCLUSIONS: Anterior maxillary segmental distraction osteogenesis can improve the soft tissue profile in patients with cleft, and there was no significant difference in soft tissue changes between the cleft side and the noncleft side.

19.
Sci Rep ; 12(1): 16597, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36198754

RESUMO

Migration of methane-rich fluids at submarine cold seeps drives intense microbial activity and precipitation of authigenic carbonates. In this study, we analyzed microbially derived authigenic carbonate samples recently recovered from active gas hydrate mounds on the southwestern slope of the Chukchi Borderlands (CB), western Arctic Ocean. Our main aim was to characterize the distribution patterns of trace elements in carbonate-hosted lipid fractions to assess metalloenzyme requirements of microbes involved in anaerobic oxidation of methane (AOM). We measured stable isotopes, trace elements, lipid biomarkers, and genomic DNA, and results indicate the dominance of AOM-related lipid biomarkers in studied carbonate samples, as well as a predominant occurrence of the anaerobic methanotrophic archaea (ANME)-1. We also report evidence for significant preferential enrichments of various trace elements (Li, Ni, Co, Cu, Zn, and Mo) in the total lipid fractions of CB carbonates, relative to elemental compositions determined for corresponding carbonate fractions, which differ from those previously reported for other seep sites. We hypothesize that trace element enrichments in carbonate-hosted lipid fractions could vary depending on the type of AOM microbial assemblage. Additional work is required to further investigate the mechanisms of lipid-bound trace elements in cold seep carbonates as potential metalloenzymes in AOM.


Assuntos
Metaloproteínas , Oligoelementos , Anaerobiose , Archaea/genética , Biomarcadores , Carbonatos , Sedimentos Geológicos , Lipídeos , Metaloproteínas/genética , Metano/análise , Oceanos e Mares , Oxirredução , Filogenia
20.
Appl Opt ; 61(22): 6671-6676, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255894

RESUMO

Photonics-assisted instantaneous frequency measurement of a microwave signal using a silicon integrated microring resonator (MRR) is proposed and experimentally demonstrated. The frequency of a microwave signal has a unique relationship with the power ratio between the two microwave signals at the outputs of two microwave photonic filters (MPF) with complementary frequency responses. The key device to implement the MPFs is a silicon integrated MMR, which is employed to convert a phase-modulated optical signal to an intensity-modulated optical signal by placing two optical carriers at the complementary slopes of the MRR. For a given frequency measurement range and resolution, an MRR is designed and fabricated, and its use for instantaneous microwave frequency (IMF) measurement is implemented. For the fabricated MRR, an IMF measurement range of 14-25 GHz with a measurement accuracy of ±0.2GHz is achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...