Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Environ Int ; 160: 107081, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35021149

RESUMO

As an important organophosphate flame retardant, tris(1-chloro-2-propyl)phosphate (TCPP) is ubiquitous in the environment leading to inevitable human exposure. However, there is a paucity of information regarding its acute/chronic effects on obesity, lipid homeostasis, and hepatocellular carcinoma, especially regarding the underlying molecular mechanisms in humans. Herein, we investigated the effects of TCPP exposure (5-25 mg/L) on lipid homeostasis in larval and adult zebrafish (Danio rerio). TCPP exposure caused remarkable lipid-metabolism dysfunction, which was reflected in obesity and excessive lipid accumulation in zebrafish liver. Mechanistically, TCPP induced the over-expression of adipogenesis genes and suppressed the expression of fatty-acid ß-oxidation genes. Consequently, excess lipid synthesis and deficient expenditure triggered oxidative damage and an inflammation response by disrupting the antioxidant system and over-expressing proinflammatory cytokine. Based on high-throughput transcriptome sequencing, we found that TCPP exposure led to enrichment of several pathways involved in lipid metabolism and inflammation, as well as several genes related to pathways of cancer. Notably, increasing expressions of Ki-67 and 53BP1 proteins, which are reliable biomarkers for recognition and risk prediction of cellular proliferation in cancer cells, were observed in liver tissues of adult zebrafish. These results imply that chronic TCPP exposure triggers a potential risk of hepatocellular carcinogenesis (HCC) progression. Collectively, these findings offer new insights into our mechanistic understanding for the health effects of organophosphorus flame retardants on humans.

2.
Adv Mater ; : e2107169, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35029001

RESUMO

Harvesting the narrow bandgap excitons of charge-transfer (CT) complexes for the achievement of near-infrared (NIR) emission has attracted intensive attention for its fundamental importance and practical application. Herein, the triphenylene (TP)-2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4 TCNQ) CT organic complex was designed and fabricated via the supramolecular self-assembly process, which demonstrated the NIR emission with a maximum peak of 770 nm and a photoluminescence quantum yield (PLQY) of 5.4%. The segregated stacking mode of TP-F4 TCNQ CT complex based on the multiple types of intermolecular interaction has a low CT degree of 0.00103 and a small counter pitch angle of 40o between F4 TCNQ and TP molecules, which breaks the forbidden electronic transitions of CT state, resulting in the effective NIR emission. Acting as the promising candidates for the active optical waveguide in the NIR region beyond 760 nm, the self-assembled TP-F4 TCNQ single-crystalline organic microwires displayed an ultra-low optical-loss coefficient of 0.060 dB/µm. This work holds considerable insights for the exploration of novel NIR-emissive organic materials via an universal "cocrystal engineering" strategy. This article is protected by copyright. All rights reserved.

4.
Sci Total Environ ; : 152916, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34998771

RESUMO

As a broad-spectrum antibacterial agent, triclosan (TCS) has been confirmed to possess potential immunotoxicity to organisms, but the underlying mechanisms remains unclear. Herein, with the aid of transgenic zebrafish strains Tg (coro1A: EGFP) and Tg (rag2: DsRed), we intuitively observed acute TCS exposure caused the drastic differentiation, abnormal development and distribution of innate immune cells, as well as barriers to formation of adaptive immune T cells. These abnormalities implied occurrence of the cytokine storm, which was further evidenced by expression changes of immune-related genes, and functional biomarkers. Based on transcriptome deep sequencing, target gene prediction and dual luciferase validation, the highly conservative and up-regulated miR-19a was chosen as the research target. Under TCS exposure, miR-19a up-regulation triggered down-regulation of its target gene socs3b, and simultaneously activated the downstream IL-6/STAT3 signaling pathway. Artificial over-expression and knock-down of miR-19a was realized by microinjecting agomir and antagomir, respectively, in 1-2-cell embryos. The miR-19a up-regulation inhibited socs3b expression to activate IL-6/STAT3 pathway, and yielded abnormal changes in the functional cytokine biomarkers, along with the sharp activation of immune responses. These findings disclose the molecular mechanisms regarding TCS-induced immunotoxicity, and offer important theoretical guidance for healthy safety evaluation and disease early warning from TCS pollution.

5.
Carbohydr Polym ; 275: 118673, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742409

RESUMO

Chitosan oligosaccharides (COS) are a derivative of low molecular weight chitosan and are potent natural antimicrobial agents. The antimicrobial activity of COS against Aspergillus flavus and Aspergillus fumigatus was evaluated by minimum inhibitory concentration (MIC) and inhibition of mycelial growth. The MICs of COS against these two fungi were 31.2 and 15.6 mg/mL, respectively. COS treatment rendered fungal mycelia wrinkled and deformed with a fractured appearance. COS also increased cellular permeability leading to a significant leakage of cellular components indicating membrane damage. This compound also dose-dependently reduced chitin production and enhanced chitinase activity while enhancing the accumulation of reactive oxygen species (ROS). These characteristics suggested that COS has inhibitory effects against food spoilage fungi and acts on the cell wall and membrane and alters cellular metabolism. COS shows promise for food industry applications since it is non-toxic to higher organisms.

6.
J Hazard Mater ; 423(Pt A): 126982, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461537

RESUMO

Terrestrial invertebrates are often used as indicator organisms in ecological risk assessments. However, determining the risk of metals to invertebrates is laborious and time-consuming due to the lengthy testing and ethical approval procedures. In this study, a review of the literature was conducted to provide toxicity data for two standard soils (OECD and LUFA 2.2). An attempt was made to establish models for predicting the toxicity of elements to invertebrates using quantitative ion character-activity relationships (QICARs). In OECD soil, the element toxicity of four groups (Enchytraeus albidus mortality and reproduction, Folsomia candida and Eisenia fetida reproduction) showed significant correlations with atomic number, atomic mass and atomic ionization potential (0.852 ≤ R2 ≤ 0.989, P < 0.05). For LUFA 2.2 soil, polarization force parameters and boiling point were most significant parameters for toxicity values of F. candida and Enchytraeus crypticus, respectively (0.866 ≤ R2 ≤ 0.962, P < 0.05). Finally, QICAR models were established, and LC50 or EC50 of elements were predicted. Then, models were verified using standard and natural soils, and showed that errors between observed and predicted logLC50/EC50 were mostly < 0.5 orders of magnitude. Thus, the developed QICAR models have potential for predicting the toxicity of elements for soils.


Assuntos
Artrópodes , Oligoquetos , Poluentes do Solo , Animais , Invertebrados , Metais/toxicidade , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
7.
J Colloid Interface Sci ; 606(Pt 1): 688-695, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416458

RESUMO

Herein, we systematically investigated the mechanisms of OH production and arsenic (As(III)) oxidation induced by sulfur vacancy greigite (Fe3S4) under anoxic and oxic conditions. Reactive oxygen species analyses revealed that sulfur vacancy-rich Fe3S4 (SV-rich Fe3S4) activated molecular oxygen to produce hydrogen peroxide (H2O2) via a two-electron reduction pathway under oxic conditions. Subsequently, H2O2 was decomposed to OH via the Fenton reaction. Additionally, H2O was directly oxidized to OH by surface high-valent iron (Fe(IV)) resulting from the abundance of sulfur vacancies in Fe3S4 under anoxic/oxic conditions. These differential OH-generating mechanisms of Fe3S4 resulted in higher OH production of SV-rich Fe3S4 compared to sulfur vacancy-poor Fe3S4 (SV-poor Fe3S4). Moreover, the OH production rate of SV-rich Fe3S4 under oxic conditions (19.3 ± 1.0 µM•h-1) was 1.6 times greater than under anoxic conditions (11.8 ± 0.4 µM•h-1). As(III) removal experiments and X-ray photoelectron spectra (XPS) showed that both OH production pathways were favorable for As(III) oxidation, and a higher concentration of As(V) was immobilized on the surface of SV-rich Fe3S4 under oxic conditions. This study provides new insights concerning OH production and environmental pollutants removal mechanisms on surface defects of Fe3S4 under anoxic and oxic conditions.


Assuntos
Arsênio , Peróxido de Hidrogênio , Radical Hidroxila , Ferro , Oxirredução , Sulfetos , Enxofre
8.
Life Sci ; 289: 120230, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34919900

RESUMO

The application of atmospheric pressure low-temperature plasma (LTP) in medical treatment has received extensive attention owing to its redox regulatory and anti-inflammatory properties. Nephrotoxicity due to oxidative stress and inflammation is the main adverse effect of cisplatin. In the present study, rats with cisplatin-induced nephrotoxicity were treated with LTP to investigate its potential protective effect. The results showed that LTP treatment has multiple protective effects on cisplatin-induced nephrotoxicity. It significantly improved clinical indicators such as survival rate, water intake, food intake, body weight, and mobility, as well as physiological indexes such as reduced renal index and levels of serum urea, creatinine, and total bilirubin; pathological indicators such as reduced tubular injury, inflammatory infiltration, tubulointerstitial fibrosis, and apoptosis; cell survival indicators such as decreased protein levels of Caspase-3 and Bax and increased Bcl-2; anti-oxidation status such as reduced malondialdehyde content and increased activities of catalase, superoxide dismutase, and glutathione peroxidase; and reduced inflammatory factors such as TNF-α in kidney tissues. Specially, LTP treatment did not influence the anticancer effect of cisplatin as observed in the solid tumor mouse model established by subcutaneously inoculating H22 cells. Moreover, LTP did not influence the physiological and pathological indicators of normal rats, suggesting its biological safety. In conclusion, LTP can protect against cisplatin-induced nephrotoxicity through its anti-oxidation, anti-inflammation, and anti-apoptosis effects, without influencing the anticancer effect of cisplatin.


Assuntos
Cisplatino , Regulação da Expressão Gênica/efeitos dos fármacos , Nefropatias , Rim , Gases em Plasma/farmacologia , Animais , Linhagem Celular Tumoral , Cisplatino/efeitos adversos , Cisplatino/farmacologia , Rim/metabolismo , Rim/patologia , Nefropatias/induzido quimicamente , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos ICR , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ratos , Ratos Wistar
9.
Sci Total Environ ; : 152112, 2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34875321

RESUMO

The present study explored the immobilization of mixed bacteria-loaded biochar on As, Pb, and Cd was explored. Physisorption and sodium alginate encapsulation were used to synthesize two kinds of mixed bacteria-loaded biochars, referred to as BCM and BCB. The observations of Scanning electron microscope, X-ray diffraction, and Fourier transform infrared spectroscopy distinctly demonstrated the colonization of mixed bacteria on biochar. Besides, the addition of BCM and BCB could increase soil pH with increasing incubation time. The residual fraction of heavy metals and soil dehydrogenase activities were also enhanced after 28 days of incubation. Pb was mainly immobilized by co-precipitation, which meant that Pb could be converted into a consistent crystalline form such as Pb5(PO4)3OH. The X-ray photoelectron spectroscopy and X-ray diffraction analyses of materials identified the formation of Ca2As2O7 and the presence of oxidation from trivalent arsenic to pentavalent arsenic. Cd was adsorbed by forming precipitations (CdCO3) and exchanging ions with the BCM and BCB. Synergistic reactions between anions and cations also contributed to the immobilization of heavy metals, such as the formation of PbAs2O6 and Cd3(AsO4)2. These results confirmed that mixed bacteria-loaded biochar was a feasible technology for the remediation of heavy metals contamination in site soils.

10.
Rev Cardiovasc Med ; 22(4): 1693-1700, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34957812

RESUMO

The relationship between the in-stent neoatherosclerosis (ISNA) formation and the plaque's characteristic changes in the non-culprit lesion is unclear. We aim to investigate the plaque characteristics changes at non-culprit lesions between patients with ISNA and without ISNA formation at 1-year follow-up. We retrospectively enrolled patients who had DES implantation in de novo lesion and underwent immediately after stenting and 1-year follow-up optical coherence tomography (OCT) examination. OCT-defined ISNA was defined as the presence of lipid-laden neointima or calcification within the culprit stent with a longitudinal extension of ≥1 mm. Non-culprit lesions were divided into two groups: ISNA group (with ISNA) and non-ISNA group (without ISNA). Plaque characteristics of non-culprit lesions were evaluated at baseline and 1-year follow-up. In total, 89 patients with 89 non-culprit lesions (ISNA: n = 37; non-ISNA: n = 52) were included in the analyses. The lesions in the ISNA group show a smaller minimum lumen area compared to the non-ISNA group at 1-year follow-up (2.57 ± 1.08 mm2 versus 3.20 ± 1.62 mm2, p = 0.044). The lesions of the ISNA group show a significant decrease in minimum lumen area changes percent (-7.25% versus 6.46%, p = 0.039). And there are more lesions with minimum lumen area (64.9% versus 38.5%, p = 0.014) and minimum lumen diameter (64.9% versus 40.4%, p = 0.023) decrease in the ISNA group. Furthermore, the lesions in ISNA group have more plaques with lipid core length increase (25.0% versus 10.0%, p = 0.040), more plaques with FCT decrease (50.0% versus 74.0%, p = 0.027) and less TCFA change to non-TCFA (33.3% versus 87.5%, p = 0.010). The plaque characteristic changes in non-culprit lesions are closely related to ISNA formation. The ISNA formation may accompany by a tardier plaque stabilization process in non-culprit lesions.

11.
J Inflamm Res ; 14: 6907-6916, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34938093

RESUMO

Objective: This study aimed to investigate the impact of the duration of cardiac troponin I (TnI) elevation on the prognosis and incidence of new-onset atrial fibrillation (NOAF) in elderly patients with non-ST-elevation acute myocardial infarction (NSTE-AMI). Methods: A total of 383 NSTE-AMI patients ≥75 years old were enrolled in this study and divided into two groups: in 194 cases, the duration of TnI elevation was ≥14 days (group 1), and in 189 cases, the duration of TnI elevation was <14 days (group 2). The patients were followed up for 60 months. The effect of TnI on prognosis was studied by cohort. The primary endpoint was a composite endpoint of cardiovascular death, reinfarction, ischemic stroke, and hospitalization for heart failure, and the secondary endpoint was all-cause death. A case-control study design was adopted to analyze the influencing factors of NOAF occurrence in Group 1 and Group 2. Results: The median duration of follow-up was 26 months. Multivariate Cox's regression analysis revealed that the duration of TnI elevation ≥14 days and diuretic use were independent variables of the major composite endpoint (p < 0.01 for both), and the left ventricular ejection fraction and the duration of TnI elevation ≥14 days were independent related variables of all-cause death (p < 0.05). The duration of TnI elevation ≥14 days was correlated with the occurrence of NOAF, but, in the multivariate logistic regression model, only uric acid and high-sensitivity C-reactive protein were independently associated with NOAF (p < 0.05). Conclusion: The duration of TnI elevation ≥14 days was the independent correlation factor of the major composite endpoint and all-cause death; high sensitivity C-reactive protein and uric acid are independent risk factors for NOAF.

12.
Front Pharmacol ; 12: 758792, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744738

RESUMO

Hyperglycemia-induced endothelial cell senescence has been widely reported to be involved in the pathogenesis of type 2 diabetes mellitus‒accelerated atherosclerosis. Thus, understanding the underlying mechanisms and identifying potential therapeutic targets for endothelial cell senescence are valuable for attenuating atherosclerosis progression. C1q/tumor necrosis factor-related protein 9 (CTRP9), an emerging potential cardiokine, exerts a significant protective effect with respect to atherosclerosis, particularly in endothelial cells. However, the exact mechanism by which CTRP9 prevents endothelial cells from hyperglycemia-induced senescence remains unclear. This study aimed to investigate the effects of CTRP9 on hyperglycemia-induced endothelial cell senescence and atherosclerotic plaque formation in diabetic apolipoprotein E knockout (ApoE KO) mice. Human umbilical vein endothelial cells (HUVECs) were cultured in normal glucose (5.5 mM) and high glucose (40 mM) with or without recombinant human CTRP9 protein (3 µg/ml) for 48 h. Purified lentiviruses overexpressing CTRP9 (Lv-CTRP9) and control vectors containing green fluorescent protein (Lv-GFP) were injected via the tail vein into streptozotocin-induced diabetic ApoE KO mice. Results revealed that exposure of HUVECs to HG significantly increased the expression of Krüppel-like factor 4 (KLF4) and cyclin-dependent kinase inhibitor p21 (p21) and decreased that of telomerase reverse transcriptase (TERT). Treatment with recombinant human CTRP9 protein protected HUVECs from HG-induced premature senescence and dysfunction. CTRP9 promoted the phosphorylation of AMP-activated kinase (AMPK), attenuated the expression of KLF4 and p21 induced by HG, and increased the expression of TERT in HUVECs. Furthermore, in the background of AMPKα knockdown or KLF4 activation, the protective effects of CTRP9 were abolished. In-vivo experiments showed that the overexpression of CTRP9 inhibited vascular senescence and reduced atherosclerotic plaque formation in ApoE KO mice with diabetes. In conclusion, we demonstrate that KLF4 upregulation plays a crucial role in HG-induced endothelial senescence. This anti-atherosclerotic effect of CTRP9 may be partly attributed to the inhibition of HG-induced endothelial senescence through an AMPKα/KLF4-dependent mechanism, suggesting that CTRP9 could benefit further therapeutic approaches for type 2 diabetes mellitus‒accelerated atherosclerosis.

14.
Biotechnol Lett ; 43(12): 2209-2216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34606014

RESUMO

OBJECTIVES: The production of riboflavin with Bacillus subtilis, is an established process, however it is yet to be fully optimized. The aim of this study was to explore how riboflavin yields can be improved via in vitro and in vivo metabolic engineering modification of the pentose phosphate pathway (PPP). RESULTS: In vitro, glucose was replaced with sodium gluconate to enhance PPP. Flask tests showed that the riboflavin titer increased from 0.64 to 0.87 g/L. The results revealed that the direct use of sodium gluconate could benefit riboflavin production. In vivo, gntP (encoding gluconate permease) was overexpressed to improve sodium gluconate uptake. The riboflavin titer reached 1.00 g/L with the mutant B. subtilis RF01. Ultimately, the fermentation verification of the engineered strain was carried out in a 7-L fermenter, with the increased riboflavin titer validating this approach. CONCLUSIONS: The combination of metabolic engineering modifications in vitro and in vivo was confirmed to promote riboflavin production efficiently by increasing PPP and has great potential for industrial application. This work is aimed to explore how to improve the riboflavin yield by the rational renovation of the pentose phosphate pathway (PPP). In vitro, metabolic engineering mainly uses sodium gluconate as a carbon source instead of glucose, and in vivo, metabolic engineering mainly includes the overexpression of sodium gluconate utility-related genes. The effect of sodium gluconate on cell growth, riboflavin production was investigated in the flasks and fermenter scale.

15.
Eur J Pharmacol ; 911: 174526, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34599914

RESUMO

Berberine is an extract derived from Chinese herbs with pleiotropic cardiovascular protective effects. However, the underlying mechanism remains unclear because of its poor bioavailability. Herin, we aimed to investigate whether berberine affects choline diet-induced arterial thrombosis and explore the potential mechanism. Ultrasound and optical coherence tomography were used to assess the potential risk of artery thrombosis in vivo. The plasma concentrations of trimethylamine N-oxide (TMAO) and trimethylamine (TMA) were quantified with mass spectrometry. Enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qPCR) were utilized to detect the levels of microbial TMA-lyase choline utilization C (CutC) in faeces. Gut microbiota analysis was performed with 16S rRNA gene sequencing. For in vitro studies, platelet aggregometry, intracellular Ca2+ measurement, ATP release assay, flow cytometry and Western blot were applied to identify the effects of TMAO on platelets. Berberine treatment significantly decreased the CutC levels in the caecal contents, reduced choline diet-induced TMA and TMAO production, and subsequently, reduced the arterial thrombosis potential risk. Berberine administration remodelled the structure of gut microbiota in rats and increased the levels of the genus Lactobacillus. Finally, TMAO enhanced platelet reactivity to collagen by promoting the phosphorylation levels of extracellular signal-regulated kinase 1/2 (ERK1/2) and Jun N-terminal kinase (JNK) in platelets. These results demonstrate that berberine attenuates the risk of choline diet-induced arterial thrombosis by changing the gut microbial composition and reducing TMAO generation.

16.
J Sep Sci ; 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34661968

RESUMO

To simultaneously and efficiently extract pollutants with differential polarities, we herein fabricated and characterized a multifunctional nanocomposite. The novel nanohybrids used NiFe2 O4 as magnetic cores, and NH2 -MIL-101(Al), ß-cyclodextrin and graphene oxide as functional components combined with magnetic cores. With the aid of graphene oxide's large π-conjugated system, NH2 -MIL-101(Al)'s strong adsorption to moderately/strongly polar chemicals, and ß-cyclodextrin's specific recognition effect, the nanohybrids realized synergistically efficient extraction of polyaromatic hydrocarbons and bisphenols with a logKow range of 3-6. Combined with acidic and alkaline sources, the nanohybrids-based effervescent tablets were prepared. Based on effervescent reaction-enhanced nanohybrids-based efficient adsorption/extraction and high performance liquid chromatography and fluorescence detection, we successfully developed an excellent microextraction method for the simultaneous determination of both polyaromatic hydrocarbons and bisphenols in roasted meat samples. Several important variables were optimized as follows: Na2 CO3 and tartaric acid as acidic and alkaline sources, 900 µLof the mixed solvent (acetone and hexane at 2:1 by v/v) as the eluent, 5 min of elution time. Under optimized conditions, the novel method gave low limits of detection (0.07-0.30 µg kg-1 ), satisfactory recoveries (86.9-103.9%), and high precision (relative standard deviations of 1.9-6.7%) in roasted lamb, beef, pork, chicken, and sausage samples.

17.
Front Cardiovasc Med ; 8: 726307, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34631827

RESUMO

Introduction: It has been reported that sex has well-established relationships with the prevalence of coronary artery disease (CAD) and the major adverse cardiovascular events. Compared with men, the difference of coronary artery and myocardial characteristics in women has effects on anatomical and functional evaluations. Quantitative flow ratio (QFR) has been shown to be effective in assessing the hemodynamic relevance of lesions in stable coronary disease. However, its suitability in acute myocardial infarction patients is unknown. This study aimed to evaluate the sex differences in the non-infarct-related artery (NIRA)-based QFR in patients with ST-elevation myocardial infarction (STEMI). Methods: In this study, 353 patients with STEMI who underwent angiographic cQFR assessment and interventional therapy were included. According to contrast-flow QFR (cQFR) standard operating procedures: reliable software was used to modeling the hyperemic flow velocity derived from coronary angiography in the absence of pharmacologically induced hyperemia. 353 patients were divided into two groups according to sex. A cQFR ≤0.80 was considered hemodynamically significant, whereas invasive coronary angiography (ICA) luminal stenosis ≥50% was considered obstructive. Demographics, clinical data, NIRA-related anatomy, and functional cQFR values were recorded. Clinical outcomes included the NIRA reclassification rate between men and women, according to the ICA and cQFR assessments. Results: Women were older and had a higher body mass index (BMI) than men. The levels of diastolic blood pressure, troponin I, peak creatine kinase-MB, low-density lipoprotein cholesterol, N terminal pro B-type natriuretic peptide, stent diameter, and current smoking rate were found to be significantly lower in the female group than in the male group. Women had a lower likelihood of a positive cQFR ≤0.80 for the same degree of stenosis and a lower rate of NIRA revascularization. Independent predictors of positive cQFR included male sex and diameter stenosis (DS) >70%. Conclusions: cQFR values differ between the sexes, as women have a higher cQFR value for the same degree of stenosis. The findings suggest that QFR variations by sex require specific interpretation, as these differences may affect therapeutic decision-making and clinical outcomes.

18.
Ecotoxicol Environ Saf ; 226: 112881, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34634737

RESUMO

Geological disasters seriously threaten the safety of human life, property, ecological resources, and the environment. Effective control of geological disasters is the focus of achieving sustainable social development. The Helong City (Jilin Province, China) was selected as the case study. Combined with GIS technology, a new integrated prediction model of geological disaster susceptibility was developed to improve the accuracy of geological disaster assessment, reduce the cost of geological disaster treatment, and ensure the sustainable development of ecological environment. The research results showed that elevation and normalized difference vegetation index (NDVI) were the key factors affecting susceptibility. Compared with the conventional model, the accuracy of the developing integrated model FR-DT and FR-RF was improved by more than 6%, and the disaster points were more concentrated in the high susceptibility zone. Statistical results of disaster treatment cost estimation and gross domestic product (GDP) value showed that the integrated model can save about 10% of treatment cost, and the ratio of total GDP/disaster governance cost was higher. The performance of the integrated model FR-DT and FR-RF had obvious advantages over the conventional model in terms of prediction accuracy, prevention pertinence, and prevention cost. These research results promote the advancement of geological disaster prevention and control technology, ensure the safety of the geological environment, and are of great significance to the sustainable development of the regional economy.


Assuntos
Desastres , Sistemas de Informação Geográfica , China , Cidades , Meio Ambiente , Humanos , Desenvolvimento Sustentável
19.
Chem Commun (Camb) ; 57(89): 11803-11806, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34676864

RESUMO

Organic homostructures with tunable physiochemical properties were fabricated by simply changing the isomer molecules via the "cocrystal engineering" approach. The morphology of the cocrystals can be changed into rod-like or branched, with superior waveguide and multi-directional waveguide performance, respectively, which contributes to the realization of optical waveguide modules with integrated functions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...