Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Mais filtros

Base de dados
Intervalo de ano de publicação
Exp Ther Med ; 23(3): 204, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35126707


The melanoma antigen gene family A (MAGEA) family of proteins comprises of cancer-testis antigens that are highly expressed in a number of tumours but are minimally expressed in normal cells. Due to its expression characteristics, this protein family has become a popular target for anti-cancer drugs and immunotherapy research over recent years. Although, elevated expression levels of MAGEA6 has been found in different types of tumours, there remains to be insufficient information on the function of MAGEA6 and its associated gene regulation pathways. The present study used Transwell, Cell Counting Kit-8 and wound healing assays to analyse the effects of MAGEA6 on Eca109 cell invasion, migration and proliferation. The main functions and pathways involved in MAGEA6 were predicted by Illumina Hiseq screening for mutually regulated genes and core genes. Eca109 cell line with a high expression of MAGEA6 was a stable cell line obtained by transfection in the early stage, and this cell line was used in subsequent experiments. Transcriptome sequencing was performed on this cell line and the Eca109 cell line that normally expressed MAGEA6. It was revealed that a high expression of MAGEA6 conferred a significant stimulating effect on cell proliferation whilst also significantly increasing cell invasion and migration. Transcriptomic analysis identified 14 differentially expressed genes and 13 core regulatory genes closely associated with MAGEA6 expression regulation, such as methylsterol monooxygenase 1 (MSMO1). The present study suggest that MAGEA6 positively regulated MSMO1 expression, which may serve an oncogenic role in cells through this regulatory effect. Overall, this provided a novel route of investigation for an in-depth study of the regulatory function of MAGEA6.

Exp Ther Med ; 18(3): 1816-1822, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31410142


Esophageal carcinoma (EC) is the sixth most deadly of all cancers. It is among the most malignant cancers due to its highly aggressive nature and low survival rate. The incidence of EC is high in Asia, particularly in Southern areas including China, Iran and Japan. There is a large body of evidence to suggest an association between the melanoma antigen gene (MAGE) family and the initiation of cancer; however, there is no clear evidence to suggest an association between EC and MAGE. Discovery of the chemical and physiological processes relevant to the occurrence of EC is vital for clinicians to diagnose and treat this highly aggressive cancer. The present study focused on the association of EC with the expression of MAGE family member A6 (MAGEA6) at the mRNA and protein levels using gene chip, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. The expression of MAGEA6 in human esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC) tissue samples were compared with those in paracancerous tissue. The result of the gene chip assay revealed that as the generation grew, there was a significant increase in MAGEA6 transcription in the esophageal epithelial cell line, SHEE Different ESC cell lines also exhibited a significantly higher transcription of MAGEA6 compared with the HaCaT cell line, as determined via reverse transcription-quantitative PCR. An higher positive rate of MAGEA6 expression in ESCC and EAC tissues was also revealed when compared with paracancerous tissues, as determined via immunohistochemistry. The results indicated that MAGEA6 is highly transcribed and expressed in the development of EC and may therefore serve as a novel biomarker for the diagnosis or treatment of EC.

J Cancer ; 9(22): 4242-4249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519325


Esophageal cancer is one of the leading malignancies globally and long non-coding RNAs (lncRNAs) have been proved to have an important role in different malignancies including esophageal cancer. However their role in disease progression is still not clear. The objective of the study was to investigate the expression and role of LINC01234 in progression of esophageal cancer cells. LncRNA LINC01234 was found to be upregulated in esophageal cancer cells by chip sequencing. The expression level of LINC01234 was detected from different esophageal cancer cell lines by qRT-PCR. After this, the LINC01234 knockdown effects on cell proliferation, migration, invasion, and apoptosis were evaluated by cell proliferation assay, wound healing assay, invasion assay, and flow cytometric analysis in vitro. Expression of lncRNA LINC01234 was found to be markedly upregulated in the CEC2 cell line. Furthermore, cell proliferation, migration and invasion were significantly (P < 0.05) suppressed as compared to negative control while apoptotic rate was also found increased as a result of the knockdown of LINC01234. Significantly upregulated expression of LINC01234 in CEC2 cells and downregulated expression after knockdown is observed. The impact of LINC01234 knockdown on cell migration, invasion, proliferation and apoptosis indicated that LINC01234 may represent a new marker and a potential therapeutic target for esophageal cancer.

Gastroenterol Res Pract ; 2018: 2028986, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29853858


Objective: The incidence of the upper gastrointestinal tumor has increased rapidly during recent decades. The relationship between local water pollution and the tumor is still not much clear, so this study was conducted to further investigate the local water pollution and its influence on the malignant cell transformation. Prevalence of human papillomavirus (HPV) in local esophageal cancer (EC) patients was also analyzed in Shenqiu County for the first time. Methods: Two-step cell transformation was used to study different sources of water in the malignant cell transformation, and the existence of 3-methylcholanthrene (3-MC) in water was analyzed from the river and shallow and deep wells. HPV DNA in tissue samples of EC patients was detected by polymerase chain reaction (PCR) and HPV diagnostic kit. Results: The river water has higher cytotoxicity than the shallow well water and induced significant cell malignant transformation, while deep well water has not shown the malignant cell transformation. In Huaihe River water, the 3-MC concentration was found higher than shallow and deep wells. An HPV infection rate was found high in patients with esophageal cancer. Conclusion: Long-term consumption of polluted water can induce malignant cell transformation, and the presence of HPV may be an important cause of cancer.

Life Sci ; 127: 46-52, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25747255


AIMS: The integration preferences of human papillomavirus (HPV) have been intensively studied and contested over recent years. To disclose the integration preferences of high-risk HPV in cervical cancer, HPV transcriptional sites and features in different cervical cancer cell lines were identified. MAIN METHODS: In this study, three cervical cancer cell lines (CaSki, HeLa, and SiHa) were subjected for HPV genome status determination by amplification of papillomavirus oncogene transcripts (APOT) assay. The numbers of viral copies in human genomes and numbers of viral-human fusion mRNAs in three HPV-integrated cervical cancer cell lines were measured and analysed. KEY FINDINGS: The results revealed that the gene desert region 8q24 of the HPV type 18 integrated HeLa cell line and the 13q21-22 region of the HPV type 16 integrated CaSki and SiHa cell lines were hotspots for HPV integration, and the numbers of viral copies in the human genomes of the three cell lines that we detected were not in accordance with those reported in previous studies. SIGNIFICANCE: Integration of the HPV genome into the host cell chromosome suggests that persistent HPV infection is vital for malignant cell transformation and carcinogenesis. This study provides information to benefit health care professionals seeking more comprehensive and accurate diagnostics for HPV-related disease"? Please check, and amend as necessary.

Linhagem Celular Tumoral , Genoma Viral/genética , Papillomavirus Humano 16/genética , Papillomavirus Humano 18/genética , Neoplasias do Colo do Útero/genética , Integração Viral/genética , Feminino , Dosagem de Genes , Regulação Viral da Expressão Gênica/genética , Células HeLa , Humanos , RNA Viral/genética , Sítio de Iniciação de Transcrição