RESUMO
BACKGROUND: New drugs are urgently needed for the treatment of liver cancer, a feat that could be feasibly accomplished by finding new therapeutic purposes for marketed drugs to save time and costs. As a new class of national anti-infective drugs, carrimycin (CAM) has strong activity against gram-positive bacteria and no cross resistance with similar drugs. Studies have shown that the components of CAM have anticancer effects. AIM: To obtain a deeper understanding of CAM, its distribution, metabolism and anti-inflammatory effects were assessed in the organs of mice, and its mechanism of action against liver cancer was predicted by a network pharmacology method. METHODS: In this paper, the content of isovaleryl spiramycin III was used as an index to assess the distribution and metabolism of CAM and its effect on inflammatory factors in various mouse tissues and organs. Reverse molecular docking technology was utilized to determine the target of CAM, identify each target protein based on disease type, and establish a target protein-disease type network to ascertain the effect of CAM in liver cancer. Then, the key action targets of CAM in liver cancer were screened by a network pharmacology method, and the core targets were verified by molecular docking and visual analyses. RESULTS: The maximum CAM concentration was reached in the liver, kidney, lung and spleen 2.5 h after intragastric administration. In the intestine, the maximum drug concentration was reached 0.5 h after administration. In addition, CAM significantly reduced the interleukin-4 (IL-4) levels in the lung and kidney and especially the liver and spleen; moreover, CAM significantly reduced the IL-1ß levels in the spleen, liver, and kidney and particularly the small intestine and lung. CAM is predicted to regulate related pathways by acting on many targets, such as albumin, estrogen receptor 1, epidermal growth factor receptor and caspase 3, to treat cancer, inflammation and other diseases. CONCLUSION: We determined that CAM inhibited inflammation. We also predicted the complex multitargeted effects of CAM that involve multiple pathways and the diversity of these effects in the treatment of liver cancer, which provides a basis and direction for further clinical research.
Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Hepáticas , Animais , Camundongos , Simulação de Acoplamento Molecular , Neoplasias Hepáticas/tratamento farmacológico , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêuticoRESUMO
Objective: Alzheimer's disease (AD) is a neurodegenerative disease characterized by neuropathology and cognitive decline and associated with age. The comprehensive deoxyribonucleic acid methylation (DNAm)-transcriptome profile association analysis conducted in this study aimed to establish whole-genome DNAm profiles and explore DNAm-related genes and their potential functions. More appropriate biomarkers were expected to be identified in terms of AD. Materials and methods: Illumina 450KGSE59685 dataset AD (n = 54) and HC (n = 21) and ribonucleic-acid-sequencing data GSE118553 dataset AD patients (n = 21) and HCs (n = 13) were obtained from the gene expression omnibus database before a comprehensive DNAm-transcriptome profile association analysis, and we performed functional enrichment analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses (KEGG). Three transgenic mice and three wild-type mice were used to validate the hub genes. Results: A total of 18,104 DNAm sites in healthy controls (n = 21) and AD patients (n = 54) were surveyed across three brain regions (superior temporal gyrus, entorhinal cortex, and dorsolateral prefrontal cortex). With the addition of the transcriptome analysis, eight hypomethylated-related highly expressed genes and 61 hypermethylated-related lowly expressed genes were identified. Based on 69 shared differentially methylated genes (DMGs), the function enrichment analysis indicated Guanosine triphosphate enzymes (GTPase) regulator activity, a synaptic vesicle cycle, and tight junction functioning. Following this, mice-based models of AD were constructed, and five hub DMGs were verified, which represented a powerful, disease-specific DNAm signature for AD. Conclusion: The results revealed that the cross-brain region DNAm was altered in those with AD. The alterations in DNAm affected the target gene expression and participated in the key biological processes of AD. The study provides a valuable epigenetic resource for identifying DNAm-based diagnostic biomarkers, developing effective drugs, and studying AD pathogenesis.
RESUMO
This study examines how aging affects the healing capacity of bituminous composites containing polyphosphoric acid (PPA). PPA is commonly used in bituminous composites to enhance its elasticity, however, PPA effectiveness highly depends on other constituents on the matrix and the environmental (internal and external) factors. In terms of internal factors, the interplay between PPA and various bitumen modifiers have been extensively studied. Here, we study how external factors such as exposure to ultraviolet radiation affect PPA's efficacy, measured in terms of change in bitumen's healing index. The study results showed that the introduction of PPA to bituminous composites significantly increases the bitumen healing index, however, the change in the healing index becomes less pronounced as aging progresses. The presence of additives such as taconite were found to affect the effect of PPA on bitumen's healing index. For instance, bitumens containing 30% taconite showed the highest increase in their healing index in the presence of PPA among studied scenarios. Overall, bitumen containing PPA had a higher healing index than those without PPA regardless of the extent of aging and dosage of modifiers. This, in turn, indicates that PPA is highly effective for enhancing bitumen healing. This can be attributed to the role of PPA in promoting intermolecular interactions within the bitumen matrix.
RESUMO
AIM: To examine how the effects of hardiness, self-efficacy and positive academic emotion related to the SRL ability of undergraduate nursing students. DESIGN: A cross-sectional survey was designed. METHODS: A total of 395 Chinese undergraduate nursing students from two undergraduate colleges filled out the questionnaires from May to June 2019. The relationships between hardiness, self-efficacy, positive academic emotion and SRL ability were analysed by structural equation modelling. RESULTS: The response rate was 94.05%. SRL ability was significantly positive correlated with hardiness, self-efficacy and positive academic emotion in undergraduate nursing students. Self-efficacy (ß = 0.417, p < 0.001) and positive academic emotion (ß = 0.232, p < 0.001) showed a direct effect on the SRL ability. Although hardiness showed no direct effect on the SRL ability, it affected SRL ability through three indirect ways: self-efficacy (77.778%), positive academic emotion (14.184%) and the chain mediating effect from self-efficacy to positive academic emotion (8.038%). CONCLUSIONS: Nursing students with a higher level of hardiness would have higher self-efficacy, and more positive and stable academic emotions to obtain the better SRL ability. The produced model provides insights into several factors associated with SRL ability of nursing students. Hardiness, self-efficacy and positive academic emotion should be emphasized in the education of nursing students because these factors could improve their SRL ability and promote their life-long learning.
RESUMO
Dissolved organic matter (DOM) play critical roles in arsenic (As) biotransformation in groundwater, but its compositional characteristics and interactions with indigenous microbial communities remain unclear. In this study, DOM signatures coupled with taxonomy and functions of microbial community were characterized in As-enriched groundwater by excitation-emission matrix, Fourier transform ion cyclotron resonance mass spectrometry and metagenomic sequencing. Results showed that As concentrations were significantly positively correlated with DOM humification (r = 0.707, p < 0.01) and the most dominant humic acid-like DOM components (r = 0.789, p < 0.01). Molecular characterization further demonstrated high DOM oxidation degree, with the prevalence of unsaturated oxygen-low aromatics, nitrogen (N1/N2)-containing compounds and unique CHO molecules in high As groundwater. These DOM properties were consistent with microbial composition and functional potentials. Both taxonomy and binning analyses demonstrated the dominance of Pseudomonas stutzeri, Microbacterium and Sphingobium xenophagum in As-enriched groundwater which possessed abundant As-reducing gene, with organic carbon degrading genes capable of labile to recalcitrant compounds degradation and high potentials of organic nitrogen mineralization to generate ammonium. Besides, most assembled bins in high As groundwater presented strong fermentation potentials which could facilitate carbon utilization by heterotrophic microbes. This study provides better insight into the potential role of DOM mineralization for As release in groundwater system.
Assuntos
Arsênio , Água Subterrânea , Microbiota , Matéria Orgânica Dissolvida , Arsênio/análise , Água Subterrânea/química , Carbono , Nitrogênio/análiseRESUMO
The incidence and mortality of cervical cancer in female malignancies are second only to breast cancer, which brings a heavy health and economic toll worldwide. Paclitaxel (PTX)-based regimens are the first-class choice; however, severe side effects, poor therapeutic effects, and difficulty in effectively preventing tumor recurrence or metastasis are unavoidable. Therefore, it is necessary to explore effective therapeutic interventions for cervical cancer. Our previous studies have shown that PMGS, a marine sulfated polysaccharide, exhibits promising anti-human papillomavirus (anti-HPV) effects through multiple molecular mechanisms. In this article, a continuous study identified that PMGS, as a novel sensitizer, combined with PTX exerted synergistic anti-tumor effects on cervical cancer associated with HPV in vitro. Both PMGS and PTX inhibited the proliferation of cervical cancer cells, and the combination of PMGS with PTX displayed significant synergistic effects on Hela cells. Mechanistically, PMGS synergizes with PTX by enhancing cytotoxicity, inducing cell apoptosis and inhibiting cell migration in Hela cells. Collectively, the combination of PTX and PMGS potentially provides a novel therapeutic strategy for cervical cancer.
Assuntos
Paclitaxel , Neoplasias do Colo do Útero , Feminino , Humanos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/patologia , Células HeLa , Sulfatos/farmacologia , Linhagem Celular Tumoral , Polissacarídeos/farmacologia , Polissacarídeos/uso terapêutico , ApoptoseRESUMO
A newly discovered tick-borne virus called the severe fever with thrombocytopenia syndrome virus (SFTSV) can cause the severe fever with thrombocytopenia syndrome (SFTS). The mortality and incidence rate of SFTS patients remain extremely high due to the fast global dissemination of its arthropod vectors, and the mechanism of viral pathogenesis remains largely unknown. In this study, high-throughput RNA sequencing (RNA-Seq) was used to sequence HEK 293 cells treated with SFTSV at four time points. 115, 191, 259, and 660 differentially expressed genes (DEGs) were identified at 6, 12, 24, and 48 h post-infection, respectively. We found that SFTSV infection induced the expression of genes responsible for numerous cytokine-related pathways, including TNF, CXCL1, CXCL2, CXCL3, CXCL8, CXCL10, and CCL20. With the extension of infection time, the expression of most genes involved in these pathways increased significantly, indicating the host's inflammatory response to SFTSV. Moreover, the expression levels of GNA13, ARHGEF12, RHOA, ROCK1, and MYL12A, elements of the platelet activation signaling pathway, were downregulated during SFTSV infection, suggesting that the SFTSV infection may cause thrombocytopenia by inhibiting platelet activation. Our results contribute to further understanding the interaction between SFTSV and the host.
RESUMO
In this work, a N/P polySi thermopile-based gas flow device is presented, in which a microheater distributed in a comb-shaped structure is embedded around hot junctions of thermocouples. The unique design of the thermopile and the microheater effectively enhances performance of the gas flow sensor leading to a high sensitivity (around 6.6 µV/(sccm)/mW, without amplification), fast response (around 35 ms), high accuracy (around 0.95%), and mood long-term stability. In addition, the sensor has the advantages of easy production and compact size. With such characteristics, the sensor is further used in real-time respiration monitoring. It allows detailed and convenient collection of respiration rhythm waveform with sufficient resolution. Information such as respiration periods and amplitudes can be further extracted to predict and alert of potential apnea and other abnormal status. It is expected that such a novel sensor could provide a new approach for respiration monitoring related noninvasive healthcare systems in the future.
RESUMO
Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein that mediates cellular signaling pathways involved in cell proliferation, angiogenesis, apoptosis, and metastatic spread, is an important oncogenic drug target. Targeting the intracellular and extracellular domains of the EGFR has been authorized for a number of small-molecule TKIs and mAbs, respectively. However, their clinical application is limited by EGFR catalytic structural domain alterations, cancer heterogeneity, and persistent drug resistance. To bypass these limitations, protease-targeted chimeras (PROTACs) are emerging as an emerging and promising anti-EGFR therapy. PROTACs compensate for the limitations of traditional occupancy-driven small molecules by exploiting intracellular protein destruction processes. Recently, a mushrooming number of heterobifunctional EGFR PROTACs have been created using wild-type (WT) and mutated EGFR TKIs. PROTACs outperformed EGFR TKIs in terms of cellular inhibition, potency, toxicity profiles, and anti-drug resistance. Herein, we present a comprehensive overview of the development of PROTACs targeting EGFR for cancer therapy, while also highlighting the challenges and opportunities associated with the field.
RESUMO
OBJECTIVES: The study aimed to identify clinical characteristics in Chinese patients with psoriatic arthritis (PsA) with or without a family history of psoriasis and/or PsA. METHODS: Patients with PsA were recruited based on Chinese REgistry of Psoriatic ARthritis (CREPAR) between December 2018 and June 2021. The demographics, clinical information relating to PsA, laboratory variables and comorbidities were collected. The association between family history of psoriatic disease and clinical characteristics on PsA was analysed using logistic regression analysis. RESULTS: Among 1074 eligible patients with PsA, 313 (29.1%) had a family history of psoriasis and/or PsA. Compared with patients without a family history, notably, patients with a family history of psoriasis and/or PsA had an earlier age of onset of psoriasis and PsA, higher proportions of enthesitis and nail involvement, a higher prevalence of positive human leukocyte antigen-B27 (HLA-B27), lower disease activity score 28-erythrocyte sedimentation rate, higher proportions of hyperlipidaemia, lower proportions of hypertension and diabetes. Furthermore, after adjusting for confounding factors, logistic regression analysis demonstrated that a positive family history of psoriasis and/or PsA was associated with more females (OR 1.514, 95% CI 1.088-2.108, p=0.014), earlier age at psoriasis onset (OR 0.971, 95%CI 0.955-0.988, p=0.001), a higher prevalence of HLA-B27 (OR 1.625 95%CI 1.089-2.426, p=0.018), more presence of nail involvement (OR 1.424, 95%CI 1.007-2.013, p=0.046) and enthesitis (OR 1.393, 95%CI 1.005-1.930, p=0.046), a higher proportion of hyperlipidaemia (OR 2.550, 95%CI 1.506-4.317, p=0.001) in PsA patients. CONCLUSIONS: This was first nationwide study to characterize patients with and without a family history of psoriatic disease in China. The findings from the present study revealed that family history of psoriasis and/or PsA had greater effects on disease phenotypes of PsA, especially nail disease and enthesitis.
RESUMO
Juvenile hormone (JH) has a classic "status quo" action at both the pupal and adult molts when administrated exogenously. In Drosophila, treatment with JH at pupariation inhibits the formation of abdominal bristles, which are derived from the histoblasts. However, the mechanism via which JH exerts this effect remains poorly understood. In this study, we analyzed the effect of JH on histoblast proliferation, migration, and differentiation. Our results indicated that whereas the proliferation and migration of histoblasts remained unaffected following treatment with a JH mimic (JHM), their differentiation, particularly the specification of sensor organ precursor (SOP) cells, was inhibited. This effect was attributable to downregulated proneural genes achaete (ac) and Scute (sc) expression levels, which prevented the specification of SOP cells in proneural clusters. Moreover, Kr-h1 was found to mediate this effect of JHM. Histoblast-specific overexpression or knockdown of Kr-h1, respectively mimicked or attenuated the effects exerted by JHM on abdominal bristle formation, SOP determination, and transcriptional regulation of ac and sc. These results indicated that the defective SOP determination was responsible for the inhibition of abdominal bristle formation by JHM, which, in turn, was mainly mediated via the transducing action of Kr-h1.
RESUMO
This study assesses the actual measured quantities of melatonin and cannabidiol (CBD) in products marketed and sold in the US as melatonin gummies compared with the quantities declared on their labels.
Assuntos
Canabidiol , Cannabis , Melatonina , Canabidiol/administração & dosagem , Canabidiol/análise , Melatonina/administração & dosagem , Melatonina/análise , Administração Oral , Estados Unidos , Formas de DosagemRESUMO
Major heart diseases pose a serious threat to human health. Finding early diagnostic markers and key therapeutic targets is an urgent scientific problem in this field. Mammalian sterile 20-like kinase 1 (MST1) is a protein kinase, and the occurrence of many heart diseases is related to the continuous activation of the MST1 gene. With the deepening of the research, the potential role of MST1 in promoting the development of heart disease has become more apparent. Therefore, to better understand the role of MST1 in the pathogenesis of heart disease, this work systematically summarizes the role of MST1 in the pathogenesis of heart disease, gives a comprehensive overview of its possible strategies in the diagnosis and treatment of heart disease, and analyzes its potential significance as a marker for the diagnosis and treatment of heart disease.
Assuntos
Cardiopatias , Proteínas Serina-Treonina Quinases , Animais , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Miócitos Cardíacos/metabolismo , Apoptose/fisiologia , Mamíferos/metabolismoRESUMO
BACKGROUND: The clinical features of enthesitis in patients with psoriatic arthritis (PsA) have been reported in some Western countries, but data in China are very limited. This study aimed to describe the characteristics of enthesitis in Chinese patients with PsA and compared them with those in other cohorts. METHODS: Patients with PsA enrolled in the Chinese Registry of Psoriatic Arthritis (CREPAR) (December 2018 to June 2021) were included. Data including demographics, clinical characteristics, disease activity measures, and treatment were collected at enrollment. Enthesitis was assessed by the Spondyloarthritis Research Consortium of Canada (SPARCC), Maastricht ankylosing spondylitis enthesitis score (MASES), and Leeds enthesitis index (LEI) indices. A multivariable logistic model was used to identify factors related to enthesitis. We also compared our results with those of other cohorts. RESULTS: In total, 1074 PsA patients were included, 308 (28.7%) of whom had enthesitis. The average number of enthesitis was 3.3 ± 2.8 (range: 1.0-18.0). More than half of the patients (165, 53.6%) had one or two tender entheseal sites. Patients with enthesitis had an earlier age of onset for both psoriasis and arthritis, reported a higher proportion of PsA duration over 5 years, and had a higher percentage of axial involvement and greater disease activity. Multivariable logistic regression showed that axial involvement (odds ratio [OR] 2.21, 95% confidence interval [CI], 1.59-3.08; P <0.001), psoriasis area and severity index (PASI) (OR: 1.03, 95% CI: 1.01-1.04; P = 0.002), and disease activity score 28-C reactive protein (DAS28-CRP) (OR: 1.25, 95% CI: 1.01-1.55; P = 0.037) were associated with enthesitis. Compared with the results of other studies, Chinese patients with enthesitis had a younger age, lower body mass index (BMI), a higher rate of positive human leukocyte antigen (HLA)-B27, more frequent dactylitis, and a higher proportion of conventional synthetic disease-modifying antirheumatic drugs' (csDMARDs) use. CONCLUSIONS: Enthesitis is a common condition among Chinese patients with PsA. It is important to evaluate entheses in both peripheral and axial sites.
Assuntos
Artrite Psoriásica , Entesopatia , Espondilartrite , Humanos , Pré-Escolar , Artrite Psoriásica/epidemiologia , Artrite Psoriásica/tratamento farmacológico , População do Leste Asiático , Entesopatia/complicações , Espondilartrite/epidemiologia , Sistema de Registros , Índice de Gravidade de DoençaRESUMO
BACKGROUND AND PURPOSE: Mitochondrial dysfunction is an essential part of the pathophysiology of asthma, and potential treatments that target the malfunctioning mitochondria have attracted widespread attention. We have previously demonstrated that aberrant epithelial ß-catenin signaling played a crucial role in a toluene diisocyanate (TDI)-induced steroid-insensitive asthma model. The objective of this study was to determine if the mitochondrially targeted antioxidant mitoquinone(MitoQ) regulated the activation of ß-catenin in TDI-induced asthma. METHOD: Mice were sensitized and challenged with TDI to generate a steroid-insensitive asthma model. Human bronchial epithelial cells (16HBE) were exposed to TDI-human serum albumin (HSA) and ethidium bromide(EB) to simulate the TDI-induced asthma model and mitochondrial dysfunction. RESULTS: MitoQ dramatically attenuated TDI-induced AHR, airway inflammation, airway goblet cell metaplasia, and collagen deposition and markedly protected epithelial mitochondrial functions by preserving mass and diminishing the production of reactive oxygen species (ROS). MitoQ administration stabilized ß-catenin destruction complex from disintegration and inhibited the activation of ß-catenin. Similarly, YAP1, an important constituent of ß-catenin destruction complex, was inhibited by Dasatinib, which alleviated airway inflammation and the activation of ß-catenin, and restored mitochondrial mass. In vitro, treating 16HBE cells with EB led to the activation of YAP1 and ß-catenin signaling, decreased the expression of glucocorticoid receptors and up-regulated interleukin (IL)-1ß, IL6 and IL-8 expression. CONCLUSION: Our results indicated that mitochondria mediates airway inflammation by regulating the stability of the ß-catenin destruction complex and MitoQ might be a promising therapeutic approach to improve airway inflammation and severe asthma. AVAILABILITY OF DATA AND MATERIALS: The data that support the findings of this study are available from the corresponding author upon reasonable request. Some data may not be made available because of privacy or ethical restrictions.
Assuntos
Asma , beta Catenina , Humanos , Animais , Camundongos , beta Catenina/metabolismo , Asma/tratamento farmacológico , Compostos Organofosforados , Inflamação , Modelos Animais de Doenças , Camundongos Endogâmicos BALB CRESUMO
Morphine and codeine are the two principal opiates found in the opium poppy (Papaver somniferum L.) and are therapeutically used for pain management. Poppy seeds with low opiates are primarily used for culinary purposes due to their nutritional and sensory attributes. Intentional adulteration of poppy seeds is common, often combined with immature, less expensive, exhausted, or substituted with morphologically similar seeds, viz., amaranth, quinoa, and sesame. For a safer food supply chain, preventive measures must be implemented to mitigate contamination or adulteration. Moreover, the simultaneous analysis of P. somniferum and its adulterants is largely unknown. Pre- and post-processing further complicate the alkaloid content and may pose a significant health hazard. To address these issues, two independent methods were investigated with eight botanically verified and fifteen commercial samples. Microscopical features were established for the authenticity of raw poppy seeds. Morphine, codeine, and thebaine quantities ranged from 0.8-223, 0.2-386, and 0.1-176 mg/kg, respectively, using LC-QToF. In most cases, conventional opiates have a higher content than papaverine and noscapine. The analytical methodology provided a chemical profile of 47 compounds that can be effectively applied to distinguish poppy seeds from their adulterants and may serve as an effective tool to combat ongoing adulteration.
RESUMO
Some tropical sea cucumbers of the family Holothuriidae can efficiently repel or even fatally ensnare predators by sacrificially ejecting a bioadhesive matrix termed the Cuvierian organ (CO), so named by the French zoologist Georges Cuvier who first described it in 1831. Still, the precise mechanisms for how adhesiveness genetically arose in CO and how sea cucumbers perceive and transduce danger signals for CO expulsion during defense have remained unclear. Here, we report the first high-quality, chromosome-level genome assembly of Holothuria leucospilota, an ecologically significant sea cucumber with prototypical CO. The H. leucospilota genome reveals characteristic long-repeat signatures in CO-specific outer-layer proteins, analogous to fibrous proteins of disparate species origins, including spider spidroin and silkworm fibroin. Intriguingly, several CO-specific proteins occur with amyloid-like patterns featuring extensive intramolecular cross-ß structures readily stainable by amyloid indicator dyes. Distinct proteins within the CO connective tissue and outer surface cooperate to give the expelled matrix its apparent tenacity and adhesiveness, respectively. Genomic evidence offers further hints that H. leucospilota directly transduces predator-induced mechanical pressure onto the CO surface through mediation by transient receptor potential channels, which culminates in acetylcholine-triggered CO expulsion in part or in entirety. Evolutionarily, innovative events in two distinct regions of the H. leucospilota genome have apparently spurred CO's differentiation from the respiratory tree to a lethal defensive organ against predators.
Assuntos
Holothuria , Pepinos-do-Mar , Animais , Holothuria/genética , Holothuria/química , Holothuria/metabolismo , Proteínas Amiloidogênicas/metabolismo , AdesividadeRESUMO
Schizophrenia is a neurodevelopmental brain disorder whose genetic risk is associated with shifting clinical phenomena across the life span. We investigated the convergence of putative schizophrenia risk genes in brain coexpression networks in postmortem human prefrontal cortex (DLPFC), hippocampus, caudate nucleus, and dentate gyrus granule cells, parsed by specific age periods (total N = 833). The results support an early prefrontal involvement in the biology underlying schizophrenia and reveal a dynamic interplay of regions in which age parsing explains more variance in schizophrenia risk compared to lumping all age periods together. Across multiple data sources and publications, we identify 28 genes that are the most consistently found partners in modules enriched for schizophrenia risk genes in DLPFC; twenty-three are previously unidentified associations with schizophrenia. In iPSC-derived neurons, the relationship of these genes with schizophrenia risk genes is maintained. The genetic architecture of schizophrenia is embedded in shifting coexpression patterns across brain regions and time, potentially underwriting its shifting clinical presentation.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/genética , Encéfalo , Córtex Pré-Frontal , Núcleo CaudadoRESUMO
The Z-type Ag/Ag3PO4/MIL-101(Cr) heterojunction photocatalyst (referred to as AAM-x) was successfully prepared by a simple in situ precipitation method. The photocatalytic activity of the AAM-x samples was evaluated using a common tetracycline (TC) antibiotic. All AAM-x materials are more effective in removing TC than Ag3PO4 and MIL-101(Cr). Among them, AAM-3 exhibited efficient photodegradation efficiency and excellent structural stability, and the removal rate of TC (20 mg L-1) by AAM-3 (0.5 g L-1) under 60 min of visible light was 97.9%. The effects of photocatalyst dosage, pH, and inorganic anions were also systematically investigated. According to the X-ray photoelectron spectroscopy analysis, metallic silver particles appeared on the surface of the Ag3PO4/MIL-101(Cr) mixture during the catalyst synthesis. The results of photoluminescence spectra, photocurrent response, EIS, and fluorescence lifetime showed that AAM-3 has a high photogenic charge separation efficiency. An all-solid-state Z-type heterojunction mechanism including Ag3PO4, metallic Ag, and MIL-101(Cr) is proposed to rationalize the excellent photocatalytic performance and photostability of AAM-x composites and to explain the effect of metallic Ag acting as a charge transfer bridge. The TC intermediates were identified using liquid chromatography-mass spectrometry and possible routes of TC degradation were also discussed. This work provides a viable idea for removing antibiotics by an Ag3PO4/MOF-based heterogeneous structured photocatalyst.
RESUMO
Electrochemical water splitting as an important means of obtaining high purity hydrogen fuel has attracted great interest. In this study, the structural engineering of complex WNiM-WNi LDH (M = Se, S, or P) was firstly developed by in situ growth on Ni foam for use in overall water splitting and the urea oxidation reaction. These WNiM-WNi LDH (M = Se, S, or P) catalysts exhibit outstanding electrocatalytic performance in the hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and urea oxidation reaction (UOR), respectively. An overpotential of only 64 mV of OER is required for WNiS-WNi LDH and 126 mV of HER is required for WNiP-WNi LDH to achieve 10 mA cm-2. The WNiSe-WNi LDH materials display a particularly outstanding performance for UOR, requiring a potential of 1.25 V to drive 10 mA cm-2. Moreover, the optimized WNiS-WNi LDH as an anode and WNiP-WNi LDH as a cathode can achieve 10 mA cm-2 at a low cell voltage of 1.45 V in 1 M KOH solution for overall water splitting. The density functional theory calculations show that the introduction of the NiP2 and WP material greatly reduces the Gibbs free energy of the hydrogen adsorption of the material.