Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 943
Filtrar
1.
Platelets ; 34(1): 2131752, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36210791

RESUMO

This study investigated the effect of L-PRF on promoting full-thickness skin grafting for the treatment of diabetic foot ulcer wounds and attempted to characterize the mechanism. In a retrospective study, we centrifugated 10-20 ml of venous blood at 1006.2 g for 20 min. The fibrin clot between the top oligocellular plasma layer and the bottom erythrocyte layer was extracted and directly used, without compression, to cover the wound after debridement. Patients who received L-PRF before skin grafting underwent surgery earlier than patients in the control group. Skin necrosis occurred in 7 patients (28%) in the L-PRF group and 16 (64%) in the control group. The difference was statistically significant, P < .05. The postoperative infection rate in the control group (56%) was significantly higher than that in the L-PRF group (24%), P < .05. During a mean follow-up of 1 year, ulcer recurrence occurred in 9 patients (36%) in the control group compared with 4 patients (16%) in the L-PRF group, P < .05. The final amputation rate was also higher in the control group (48%) than in the L-PRF group (20%). The difference is statistically significant, P < .05. The Maryland scale score and SF-36 score of the two groups of patients after treatment were significantly better than those before treatment, and the difference was statistically significant (P < .05). The L-PRF group (94.80 ± 4.14) had better foot scores at the last follow-up after treatment than the control group (88.84 ± 5.22) (P < .05). The results showed that L-PRF played a positive role in the treatment of Wagner grade 4 ulcer gangrene with free full-thickness skin grafts.


What is the context?● Diabetic foot is a serious complication in the later stage of the disease course of diabetic patients. The incidence rate is increasing year by year. In severe cases, it can lead to amputation or even death.● For diabetic ulcer wounds, dressings such as L-PRF or autologous fat are often used in the initial stage to speed up wound healing. For advanced wounds, especially patients with local tissue gangrene, simple wound dressings cannot meet the needs of wounds. People often use skin flaps or different types of skin grafts to treat advanced wounds.● Flap or skin grafting has been shown to be effective, but because of the patient's own neurovascular injury and infection, the rate of graft necrosis and ulcer recurrence is extremely high. What is new?● This study discusses the treatment of advanced wounds in diabetes. After thorough debridement and before skin grafting, we first covered the wound with L-PRF and observed the wound condition. Studies have shown that the use of L-PRF can allow the original poor wound to be reconstructed: the content of growth factors and growth-related cells is increased, blood circulation is improved and granulation tissue growth, bone and tendon exposure is improved, and infection is controlled. What is the impact?● This study provides evidence that using L-PRF to reconstruct wounds can greatly shorten the preparation time for elective surgery. Reconstructed wounds can better accept free skin grafts, and the incidence of postoperative complications and amputation (particularly, toe amputation) is also lower.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/cirurgia , Transplante de Pele , Fibrina/uso terapêutico , Gangrena/cirurgia , Estudos Retrospectivos , Cicatrização , Leucócitos , Dedos do Pé/cirurgia
2.
Mol Cancer ; 21(1): 32, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35090469

RESUMO

N6-methyladenosine (m6A) methylation, the most common form of internal RNA modification in eukaryotes, has gained increasing attention and become a hot research topic in recent years. M6A plays multifunctional roles in normal and abnormal biological processes, and its role may vary greatly depending on the position of the m6A motif. Programmed cell death (PCD) includes apoptosis, autophagy, pyroptosis, necroptosis and ferroptosis, most of which involve the breakdown of the plasma membrane. Based on the implications of m6A methylation on PCD, the regulators and functional roles of m6A methylation were comprehensively studied and reported. In this review, we focus on the high-complexity links between m6A and different types of PCD pathways, which are then closely associated with the initiation, progression and resistance of cancer. Herein, clarifying the relationship between m6A and PCD is of great significance to provide novel strategies for cancer treatment, and has a great potential prospect of clinical application.


Assuntos
Adenosina , Neoplasias , Adenosina/análogos & derivados , Adenosina/metabolismo , Apoptose/genética , Humanos , Metilação , Neoplasias/genética , Neoplasias/metabolismo
3.
Microbiol Spectr ; : e0199122, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472469

RESUMO

Giant pandas are uniquely vulnerable mammals in western China. It is important to develop an animal model to explore the intestinal flora of giant pandas to understand the relationship between digestive diseases and flora. Existing animal models of intestinal flora focus on human flora-associated animals, such as mice, and there is a very limited amount of knowledge regarding giant panda flora-associated animals. To fill this gap, fecal microorganisms from giant pandas were transplanted into pseudosterile and germfree mice using single and multiple gavages. Fecal samples were collected from mice at four time points after transplantation for microbial community analysis. We determined that compared to pseudosterile mice, the characteristics of intestinal flora in pandas were better reproduced in germfree mice. There was no significant difference in microbial diversity between germfree mice and giant panda gut microbes from day 3 to day 21. Germfree mice at the phylum level possessed large amounts of Firmicutes and Proteobacteria, and at the genus level, Escherichia-Shigella, Clostridium sensu stricto 1, and Streptococcus dominated the intestinal flora structure. The microbial community co-occurrence network based on indicator species indicated that germfree mice transplanted with fecal bacteria tended to form a microbial community co-occurrence network similar to that of giant pandas, while pseudosterile mice tended to restore the microbial community co-occurrence network originally present in these mice. Our data are helpful for the study of giant panda flora-associated animals and provide new insights for the in vitro study of giant panda intestinal flora. IMPORTANCE The giant panda is a unique vulnerable mammal in western China, and its main cause of death is digestive system diseases regardless of whether these animals are in the wild or in captivity. The relationship between the intestinal flora and the host exerts a significant impact on the nutrition and health of the giant pandas. However, the protected status of the giant panda has made in vivo, repeatable, and large-sample sampling studies of their intestinal flora difficult. This greatly hinders the research depth of the giant panda intestinal flora from the source. The development and utilization of specific animal models to simulate the structure and characteristics of the intestinal flora provide another means to deal with these research limitations. However, current research examining giant panda flora-associated animals is limited. This study is the first to reveal dynamic changes in the fecal flora of giant pandas in mice after transplantation.

4.
Artigo em Inglês | MEDLINE | ID: mdl-36446737

RESUMO

Zinc metal battery (ZMB) is promising as the next generation of energy storage system, but challenges relating to dendrites and corrosion of the zinc anode are restricting its practical application. Here, to stabilize Zn anode, we report a controlled electrolytic method for a monolithic solid-electrolyte interphase (SEI) via a high dipole moment solvent dimethyl methylphosphonate (DMMP). The DMMP-based electrolytes can generate a homogeneous and robust phosphate SEI (Zn3(PO4)2 and ZnP2O6). Benefiting from the protecting impact of this in-situ monolithic SEI, the zinc electrode exhibits long-term cycling of 4700 h and a high Coulombic efficiency 99.89% in Zn|Zn and Zn|Cu cell, respectively. The full V2O5|Zn battery with DMMP-H2O hybrid electrolyte exhibits a high capacity retention of 82.2% following 4000 cycles under 5 A g-1. The first success in constructing the monolithic phosphate SEI will open a new avenue in electrolyte design for highly reversible and stable Zn metal anodes.

5.
Hortic Res ; 9: uhac192, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338839

RESUMO

Under drought stress, reactive oxygen species (ROS) overaccumulate as a secondary stress that impairs plant performance and thus severely reduces crop yields. The mitigation of ROS levels under drought stress is therefore crucial for drought tolerance. MicroRNAs (miRNAs) are critical regulators of plant development and stress responses. However, the complex molecular regulatory mechanism by which they function during drought stress, especially in drought-triggered ROS scavenging, is not fully understood. Here, we report a newly identified drought-responsive miRNA, miR164g, in the wild apple species Malus sieversii and elucidate its role in apple drought tolerance. Our results showed that expression of miR164g is significantly inhibited under drought stress and it can specifically cleave transcripts of the transcription factor MsNAC022 in M. sieversii. The heterologous accumulation of miR164g in Arabidopsis thaliana results in enhanced sensitivity to drought stress, while overexpression of MsNAC022 in Arabidopsis and the cultivated apple line 'GL-3' (Malus domestica Borkh.) lead to enhanced tolerance to drought stress by raising the ROS scavenging enzymes activity and related genes expression levels, particularly PEROXIDASE (MsPOD). Furthermore, we showed that expression of MsPOD is activated by MsNAC022 in transient assays. Interestingly, Part1 (P1) region is the key region for the positive regulation of MsPOD promoter by MsNAC022, and the different POD expression patterns in M. sieversii and M. domestica is attributed to the specific fragments inserted in P1 region of M. sieversii. Our findings reveal the function of the miR164g-MsNAC022 module in mediating the drought response of M. sieversii and lay a foundation for breeding drought-tolerant apple cultivars.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36429878

RESUMO

With the vigorous development of the medical industry in China, residents' health has been significantly improved. However, along with the income gap, urban-rural gap, and healthcare resource gap caused by economic development, health inequality has become a fundamental barrier to the promotion of residents' health. The popularity of the Internet has helped close the gap to some extent, but it also has drawbacks. Using data from the China Family Panel Studies (CFPS) from 2014 to 2018, we evaluated the effects of Internet usage on health disparities among residents using fixed effect models, mediation effect models, and other methodologies. The findings indicate that Internet usage can help to minimize health inequality since it lowers income inequality, promotes health consciousness, and reduces depression. Furthermore, Internet usage plays a greater role on the health improvement of the middle-aged, the elderly, urban residents, and females. Although the Internet has brought "digital dividends" in general, the Internet usage rates among different groups also reveal that there is a clear "digital gap" among rural residents, elderly groups, and low-income groups. These results have significant implications for promoting healthcare equality.


Assuntos
Disparidades nos Níveis de Saúde , Internet , Idoso , Feminino , Pessoa de Meia-Idade , Humanos , Uso da Internet , Asiáticos , China/epidemiologia
7.
Chem Rec ; : e202200219, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344433

RESUMO

The development of catalytic synthetic approaches towards molecular complexity from simple materials continues to be an ultimate goal in synthetic chemistry. Over the past decades, N-heterocyclic carbene (NHC) organocatalysis has been extensively investigated to provide opportunities for a vast number of novel chemical transformations. Various activation modes and reactive intermediates enabled by NHC small-molecule catalysts, such as Breslow intermediates, (homo)enolates, acyl azoliums and their derived unsaturated azoliums exhibit great potential in the construction of complicated skeletons. This personal account will summarize our group's recent work in the exploration of new activation modes of NHC catalysis towards molecular complexity with a focus on the development and applications of NHC to achieve diversity and enantioselectivity in the preparation of functional molecules.

8.
Food Sci Nutr ; 10(11): 3736-3748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36348776

RESUMO

Ultrasonic-assisted extraction is a rapid and effective extraction method that uses ultrasound energy and solvents to extract target compounds from various plant matrices. In this study, the ultrasonic-assisted extraction conditions of sour jujube were optimized. A five-level central composite design (CCD) with four variables was used to evaluate ultrasonic treatment variables influencing the total saponin content (TSC), total flavonoid content (TFC), and total phenolic content (TPC) extracted from sour jujube. The solvent concentration, extraction time, ultrasonic power, and solid-to-liquid (S/L) ratio were optimized using aqueous ethanol and methanol solutions as extraction solvents. A central composite design (CCD) was used for an in-depth study, and then the optimal value that could produce the maximum TPC, TFC, TSC, and four in vitro antioxidant activities (scavenging activity of hydroxyl free radicals, ferric-reducing antioxidant power (FRAP), phosphomolybdic acid reduction method, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activity) was determined. Hydrogen peroxide-induced oxidative stress experiment confirmed that the Jujube extract could have an antioxidant role in vivo. The relationship between the contents of three compounds and the antioxidant activity in vitro and in vivo was further studied. The results showed that optimizing methanol and ethanol extraction process parameters could improve target components' extraction efficiency. Under the optimum conditions, the TFC and TPC yields of sour jujube by ethanol are better than methanol, while the yield of TSC by methanol is better than ethanol. In vivo data showed that Jujube extract protects against the adverse effects of oxidative stress and improves the life span of female and male Drosophila. This study provides a valuable reference for the full use of Ziziphus jujube, as well as a new direction in food development.

9.
Anal Methods ; 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441632

RESUMO

We propose a feature color extraction method that improves the accuracy of water quality analysis using a digital image and eliminates the effect of interfering ions and chromogenic agents on the color after a color reaction. The proposed method is based on color deconvolution (CD) combined with machine learning for substance measurement in water. After an ordinary camera acquires the solution image after color reaction, the CD algorithm is applied to extract the feature image, calculate the first-order, second-order, and third-order color moments corresponding to RGB channels, and construct a gradient boosting regression tree prediction model based on color moment features to detect substances in water. In predicting ammonia, nitrite, and orthophosphate concentrations, the mean square error values were 0.01029, 0.00063, and 0.1361, and the mean absolute error values were 0.08103, 0.02231, and 0.32886, respectively. There was no significant difference in the results of the comparative spectrophotometric method on the actual water samples. The spiked recoveries of the samples ranged from 94% to 120%, confirming that the method can effectively measure the content of substances in water.

10.
Front Mol Biosci ; 9: 1051866, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406272

RESUMO

Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review's objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.

11.
Biosensors (Basel) ; 12(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354462

RESUMO

Electrochemical biosensors generally require the immobilization of recognition elements or capture probes on the electrode surface. This may limit their practical applications due to the complex operation procedure and low repeatability and stability. Magnetically assisted biosensors show remarkable advantages in separation and pre-concentration of targets from complex biological samples. More importantly, magnetically assisted sensing systems show high throughput since the magnetic materials can be produced and preserved on a large scale. In this work, we summarized the design of electrochemical biosensors involving magnetic materials as the platforms for recognition reaction and target conversion. The recognition reactions usually include antigen-antibody, DNA hybridization, and aptamer-target interactions. By conjugating an electroactive probe to biomolecules attached to magnetic materials, the complexes can be accumulated near to an electrode surface with the aid of external magnet field, producing an easily measurable redox current. The redox current can be further enhanced by enzymes, nanomaterials, DNA assemblies, and thermal-cycle or isothermal amplification. In magnetically assisted assays, the magnetic substrates are removed by a magnet after the target conversion, and the signal can be monitored through stimuli-response release of signal reporters, enzymatic production of electroactive species, or target-induced generation of messenger DNA.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Aptâmeros de Nucleotídeos/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Hibridização de Ácido Nucleico , DNA/química , Limite de Detecção
12.
Int J Mol Sci ; 23(22)2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-36430911

RESUMO

To understand how genes precisely regulate lactation physiological activity and the molecular genetic mechanisms underlying mammary gland involution, this study investigated the transcriptome characteristics of goat mammary gland tissues at the late gestation (LG), early lactation (EL), peak lactation (PL), late lactation (LL), dry period (DP), and involution (IN) stages. A total of 13,083 differentially expressed transcripts were identified by mutual comparison of mammary gland tissues at six developmental stages. Genes related to cell growth, apoptosis, immunity, nutrient transport, synthesis, and metabolism make adaptive transcriptional changes to meet the needs of mammary lactation. Notably, platelet derived growth factor receptor beta (PDGFRB) was screened as a hub gene of the mammary gland developmental network, which is highly expressed during the DP and IN. Overexpression of PDGFRB in vitro could slow down the G1/S phase arrest of goat mammary epithelial cell cycle and promote cell proliferation by regulating the PI3K/Akt signaling pathway. In addition, PDGFRB overexpression can also affect the expression of genes related to apoptosis, matrix metalloproteinase family, and vascular development, which is beneficial to the remodeling of mammary gland tissue during involution. These findings provide new insights into the molecular mechanisms involved in lactation and mammary gland involution.


Assuntos
Cabras , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Feminino , Animais , Gravidez , Cabras/genética , Fosfatidilinositol 3-Quinases , Lactação/genética , Perfilação da Expressão Gênica
13.
Transl Psychiatry ; 12(1): 461, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329029

RESUMO

Poststroke depression (PSD) is a common complication of stroke. Brain network disruptions caused by stroke are potential biological determinants of PSD but their conclusive roles are unavailable. Our study aimed to identify the strategic structural disconnection (SDC) pattern for PSD at three months poststroke and assess the predictive value of SDC information. Our prospective cohort of 697 first-ever acute ischemic stroke patients were recruited from three hospitals in central China. Sociodemographic, clinical, psychological and neuroimaging data were collected at baseline and depression status was assessed at three months poststroke. Voxel-based disconnection-symptom mapping found that SDCs involving bilateral temporal white matter and posterior corpus callosum, as well as white matter next to bilateral prefrontal cortex and posterior parietal cortex, were associated with PSD. This PSD-specific SDC pattern was used to derive SDC scores for all participants. SDC score was an independent predictor of PSD after adjusting for all imaging and clinical-sociodemographic-psychological covariates (odds ratio, 1.25; 95% confidence interval, 1.07, 1.48; P = 0.006). Split-half replication showed the stability and generalizability of above results. When added to the clinical-sociodemographic-psychological prediction model, SDC score significantly improved the model performance and ranked the highest in terms of predictor importance. In conclusion, a strategic SDC pattern involving multiple lobes bilaterally is identified for PSD at 3 months poststroke. The SDC score is an independent predictor of PSD and may improve the predictive performance of the clinical-sociodemographic-psychological prediction model, providing new evidence for the brain-behavior mechanism and biopsychosocial theory of PSD.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Humanos , Depressão/diagnóstico por imagem , Depressão/etiologia , Depressão/psicologia , Estudos Prospectivos , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/psicologia , Isquemia Encefálica/complicações
14.
Nat Commun ; 13(1): 7138, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36414665

RESUMO

The process of recycling poly(ethylene terephthalate) (PET) remains a major challenge due to the enzymatic degradation of high-crystallinity PET (hcPET). Recently, a bacterial PET-degrading enzyme, PETase, was found to have the ability to degrade the hcPET, but with low enzymatic activity. Here we present an engineered whole-cell biocatalyst to simulate both the adsorption and degradation steps in the enzymatic degradation process of PETase to achieve the efficient degradation of hcPET. Our data shows that the adhesive unit hydrophobin and degradation unit PETase are functionally displayed on the surface of yeast cells. The turnover rate of the whole-cell biocatalyst toward hcPET (crystallinity of 45%) dramatically increases approximately 328.8-fold compared with that of purified PETase at 30 °C. In addition, molecular dynamics simulations explain how the enhanced adhesion can promote the enzymatic degradation of PET. This study demonstrates engineering the whole-cell catalyst is an efficient strategy for biodegradation of PET.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Hidrolases/metabolismo , Ácidos Ftálicos/metabolismo , Etilenos
15.
Artigo em Inglês | MEDLINE | ID: mdl-36416282

RESUMO

BACKGROUND: Sarcopenia is common in patients with Parkinson's disease (PD), showing mitochondrial oxidative stress in skeletal muscle. The aggregation of α-synuclein (α-Syn) to induce oxidative stress is a key pathogenic process of PD; nevertheless, we know little about its potential role in regulating peripheral nerves and the function of the muscles they innervate. METHODS: To investigate the role of α-Syn aggregation on neuromuscular system, we used the Thy1 promoter to overexpress human α-Syn transgenic mice (mThy1-hSNCA). hα-Syn expression was evaluated by western blot, and its localization was determined by confocal microscopy. The impact of α-Syn aggregation on the structure and function of skeletal muscle mitochondria and neuromuscular junctions (NMJs), as well as muscle mass and function were characterized by flow cytometry, transmission electron microscopy, Seahorse XF24 metabolic assay, and AAV9 in vivo injection. We assessed the regenerative effect of mitochondrial-targeted superoxide dismutase (Mito-TEMPO) after skeletal muscle injury in mThy1-hSNCA mice. RESULTS: Overexpressed hα-Syn protein localized in motor neuron axons and NMJs in muscle and formed aggregates. α-Syn aggregation increased the number of abnormal mitochondrial in the intramuscular axons and NMJs by over 60% (P < 0.01), which inhibited the release of acetylcholine (ACh) from presynaptic vesicles in NMJs (P < 0.05). The expression of genes associated with NMJ activity, neurotransmission and regulation of reactive oxygen species (ROS) metabolic process were significantly decreased in mThy1-hSNCA mice, resulting in ROS production elevated by ~220% (P < 0.05), thereby exacerbating oxidative stress. Such process altered mitochondrial spatial relationships to sarcomeric structures, decreased Z-line spacing by 36% (P < 0.05) and increased myofibre apoptosis by ~10% (P < 0.05). Overexpression of α-Syn altered the metabolic profile of muscle satellite cells (MuSCs), including basal respiratory capacity (~170% reduction) and glycolytic capacity (~150% reduction) (P < 0.05) and decreased cell migration and fusion during muscle regeneration (~60% and ~40%, respectively) (P < 0.05). We demonstrated that Mito-TEMPO treatment could restore the oxidative stress status (the complex I/V protein and enzyme activities increased ~200% and ~150%, respectively), which caused by α-Syn aggregation, and improve the ability of muscle regeneration after injury. In addition, the NMJ receptor fragmentation and ACh secretion were also improved. CONCLUSIONS: These results reveal that the α-synuclein aggregation plays an important role in regulating acetylcholine release from neuromuscular junctions and induces intramuscular mitochondrial oxidative stress, which can provide new insights into the aetiology of muscle atrophy in patients with Parkinson's disease.

16.
ACS Appl Mater Interfaces ; 14(46): 52007-52016, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36349638

RESUMO

It is essential to release annealing induced strain during the crystallization process to realize efficient and stable perovskite solar cells (PSCs), which does not seem achievable using the conventional annealing process. Here we report a novel and facile thermal gradient assisted crystallization strategy by simply introducing a slant angle between the preheated hot plate and the substrate. A distinct crystallization sequence resulted along the in-plane direction pointing from the hot side to the cool side, which effectively reduced the crystallization rate, controlled the perovskite grain growth, and released the in-plane tensile strain. Moreover, this strategy enabled uniform strain distribution in the vertical direction and assisted in reducing the defects and aligning the energy bands. The corresponding device demonstrated champion power conversion efficiencies (PCEs) of 23.70% and 21.04% on the rigid and flexible substrates, respectively. These highly stable rigid devices retained 97% of the initial PCE after 1097 h of storage and more than 80% of the initial PCE after 1000 h of continuous operation at the maximum power point. This novel strategy opens a simple and effective avenue to improve the quality of perovskite films and photovoltaic devices via strain modulation and defect passivation.

17.
Genet Sel Evol ; 54(1): 75, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401180

RESUMO

BACKGROUND: Rabbit wool traits are important in fiber production and for model organism research on hair growth, but their genetic architecture remains obscure. In this study, we focused on wool characteristics in Angora rabbits, a breed well-known for the quality of its wool. Considering the cost to generate population-scale sequence data and the biased detection of variants using chip data, developing an effective genotyping strategy using low-coverage whole-genome sequencing (LCS) data is necessary to conduct genetic analyses. RESULTS: Different genotype imputation strategies (BaseVar + STITCH, Bcftools + Beagle4, and GATK + Beagle5), sequencing coverages (0.1X, 0.5X, 1.0X, 1.5X, and 2.0X), and sample sizes (100, 200, 300, 400, 500, and 600) were compared. Our results showed that using BaseVar + STITCH at a sequencing depth of 1.0X with a sample size larger than 300 resulted in the highest genotyping accuracy, with a genotype concordance higher than 98.8% and genotype accuracy higher than 0.97. We performed multivariate genome-wide association studies (GWAS), followed by conditional GWAS and estimation of the confidence intervals of quantitative trait loci (QTL) to investigate the genetic architecture of wool traits. Six QTL were detected, which explained 0.4 to 7.5% of the phenotypic variation. Gene-level mapping identified the fibroblast growth factor 10 (FGF10) gene as associated with fiber growth and diameter, which agrees with previous results from functional data analyses on the FGF gene family in other species, and is relevant for wool rabbit breeding. CONCLUSIONS: We suggest that LCS followed by imputation can be a cost-effective alternative to array and high-depth sequencing for assessing common variants. GWAS combined with LCS can identify new QTL and candidate genes that are associated with quantitative traits. This study provides a cost-effective and powerful method for investigating the genetic architecture of complex traits, which will be useful for genomic breeding applications.


Assuntos
Pelo Animal , Herança Multifatorial , Coelhos , , Animais , Coelhos/genética , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
18.
Int J Biol Macromol ; 222(Pt B): 2158-2175, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36209911

RESUMO

Long noncoding RNA (lncRNA) can regulate mammary gland development and lactation physiological activities. However, the molecular genetic mechanisms of lncRNA in mammary gland involution and cell remodeling remain unclear. This work analyzed the expression characteristics and molecular functions of lncRNA in goat mammary gland tissue at the late lactation (LL), dry period (DP), and late gestation (LG) stages. Sequencing results showed that 3074 lncRNAs were identified in non-lactating goat mammary gland tissue. Statistical analysis of lncRNA length characteristics and exon number found that goat lncRNAs were shorter in length, had fewer exons, and significantly lower expression levels than those of protein-coding genes. 331 differentially expressed lncRNAs were identified in the three comparison groups (LLvsDP, DPvsLG, and LLvsLG), which indicated that the lncRNAs expression at the transcriptional level were changed during mammary involution. Interestingly, lncRNAs were more actively expressed during the dry period compared to lactation, suggesting that lncRNAs in mammary glands are developmentally specific. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that lncRNAs could regulate immune function, cell proliferation, apoptosis, hormones, substance metabolism, transport, and intercellular communication in the mammary gland through various action modes. Among them, cis-acting lncRNAs enhanced the protection of mammary gland health during the dry period and late gestation. The above reflects the particular mechanisms of lncRNA to adapt to the developmental needs of mammary involution and remodeling. Furthermore, in the lncRNA-miRNA-mRNA network associated with mammary gland development, the expression of LOC102168552 was higher in late gestation than in the dry period and late lactation. Its expression was positively correlated with PRLR and negatively correlated with chi-miR-324-3p. Overexpression of LOC102168552 in goat mammary epithelial cells cultured in vitro could up-regulate PRLR to activate the prolactin signaling pathway by competitively binding to chi-miR-324-3p, promoting cell proliferation, reducing cell cycle arrest in the G1 / S phase, and inhibiting apoptosis. However, overexpression of LOC102168552 alone did not affect mammary cell growth status and the prolactin signaling pathway. This indicates that LOC102168552 must rely on chi-miR-324-3p to inhibit mammary cell apoptosis. In conclusion, the above analysis revealed that lncRNAs in goat mammary tissue are differentially expressed at different stages of involution. As expected, lncRNAs adaptively regulate various physiological activities during mammary gland involution through multiple modes of action, in preparation for a new round of lactation. These findings provide a reference and help further understand the regulatory role of lncRNAs in mammary cell involution and remodeling.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Feminino , Gravidez , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cabras/genética , Cabras/metabolismo , Glândulas Mamárias Animais/metabolismo , Prolactina/metabolismo , MicroRNAs/genética
19.
Comput Math Methods Med ; 2022: 5367753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36238480

RESUMO

Acute myocardial infarction (AMI) is the most severe form of coronary heart disease caused by ischemia and hypoxia. The study is aimed at investigating the role of neuropeptides and the mechanism of electroacupuncture (EA) in acute myocardial infarction (AMI) treatment. Compared with the normal population, a significant increase in substance P (SP) was observed in the serum of patients with AMI. PGI2 expression was increased in the SP-treated AMI mouse model, and TXA2 expression was decreased. And PI3K pathway-related genes, including Pik3ca, Akt, and Mtor, were upregulated in myocardial tissue of SP-treated AMI patients. Human cardiomyocyte cell lines (HCM) treated with SP increased mRNA and protein expression of PI3K pathway-related genes (Pik3ca, Pik3cb, Akt, and Mtor). Compared to MI control and EA-treated MI rat models, Myd88, MTOR, Akt1, Sp, and Irak1 were differentially expressed, consistent with in vivo and in vitro studies. EA treatment significantly enriched PI3K/AKT signaling pathway genes within MI-associated differentially expressed genes (DEGs) according to Kyoto Encyclopedia of Genes and Genomes (KEGG). Furthermore, it was confirmed by molecular docking analysis that PIK3CA, AKT1, and mTOR form stable dockings with neuropeptide SP. PI3K/AKT pathway activity may be affected directly or indirectly by EA via SP, which corrects the PGI2/TXA2 metabolic imbalance in AMI. MI treatment is now better understood as a result of this finding.


Assuntos
Eletroacupuntura , Infarto do Miocárdio , Animais , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Biologia Computacional , Homeostase , Humanos , Camundongos , Simulação de Acoplamento Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro , Ratos , Receptores de Epoprostenol/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Substância P/genética , Substância P/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
20.
Front Microbiol ; 13: 968053, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246257

RESUMO

Natural products derived from microorganisms serve as a vital resource of valuable pharmaceuticals and therapeutic agents. Streptomyces is the most ubiquitous bacterial genus in the environments with prolific capability to produce diverse and valuable natural products with significant biological activities in medicine, environments, food industries, and agronomy sectors. However, many natural products remain unexplored among Streptomyces. It is exigent to develop novel antibiotics, agrochemicals, anticancer medicines, etc., due to the fast growth in resistance to antibiotics, cancer chemotherapeutics, and pesticides. This review article focused the natural products secreted by Streptomyces and their function and importance in curing diseases and agriculture. Moreover, it discussed genomic-driven drug discovery strategies and also gave a future perspective for drug development from the Streptomyces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...