Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 11(1): 42, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014015

RESUMO

BACKGROUND: Evidence has demonstrated conditioned medium (CM) from periodontal ligament stem cells (PDLSCs) improved periodontal regeneration. Gingival mesenchymal stem cells (GMSCs) have been considered an alternative strategy for regenerative medicine. To determine whether GMSC-CM could promote periodontal wound healing, we compared the effects of GMSC-CM and PDLSC-CM on periodontal regeneration and the underlying mechanisms in rat periodontal defects. METHODS: Cell-free CMs were collected from PDLSCs, GMSCs, and gingival fibroblasts (GFs) using ultracentrifugation (100-fold concentration). Periodontal defects were created on the buccal side of the first molar in the left mandible of 90 rats by a surgical method. Collagen membranes loaded with concentrated CMs (α-MEM, GF-CM, GMSC-CM, PDLSC-CM) were transplanted into periodontal defects. After 1, 2, and 4 weeks, the animals were sacrificed and specimens including the first molar and the surrounding tissues were separated and decalcified. Hematoxylin-eosin and Masson's trichrome staining were performed to evaluate periodontal regeneration. Immunohistochemical staining for tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-10 was conducted to analyze inflammation. Immunohistochemistry of BSP-II and Runx2 was performed to analyze osteoblast differentiation. RESULTS: Histological analysis showed the amount of newly formed periodontal tissue was significantly higher in both the GMSC-CM and PDLSC-CM groups than in the other groups, with no significant difference between these two groups. At 1 and 2 weeks, the expression levels of TNF-α and IL-1ß were significantly lower in the GMSC-CM and PDLSC-CM groups than in the other three groups, while there was no significant difference between these two groups. IL-10 expression was significantly higher in the GMSC-CM group than in the PDLSC-CM group and the other three groups. At 1, 2, and 4 weeks, BSP-II and Runx2 expressions were significantly higher in the GMSC-CM and PDLSC-CM groups than in the other three groups, with no significant difference between the two groups. CONCLUSIONS: Our results demonstrate that GMSC-CM transplantation can significantly promote periodontal regeneration in rats and achieve the same effect as PDLSC-CM. The mechanism of periodontal regeneration may involve the regulation of inflammatory factors and the promotion of osteogenic differentiation of bone progenitor cells in the wound region by CMs from MSCs.

2.
Biomed Pharmacother ; 125: 109977, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32032892

RESUMO

INTRODUCTION: According to previous reports, hypertension has become the most common chronic disease in the world. Captopril, an angiotensin-converting enzyme inhibitor, has been widely used for the therapy of arterial hypertension and cardiovascular diseases therapy. Besides, Shunaoxin pill (SNX) as a traditional Chinese prescription showed antihypertensive effect in our previous research. OBJECTIVE: This study means to investigate whether SNX combining with captopril could show antihypertensive and renal protective effects on spontaneous hypertension rats (SHRs). METHODS: SHRs were randomly assigned to four treatment groups, including non-treated group, captopril, SNX, and captopril + SNX-treated groups. Their body weight and systolic blood pressure (SBP) were measured weekly. Histopathological examination was analyzed through Masson staining and hematoxylin and eosin staining. Biochemical analyses, ELISA, and western blot were used to analyze their combining mechanism. RESULTS: In this experiment, this combinatorial therapy significantly reduced aortic wall thickness, increased the content of NO, NOS and eNOS, decreased the content of bradykinin and endothelin 1(ET-1), and regulated the levels of TG, TC and HDLC back to normal, which suggested they could induce vasodilation and lower blood pressure. Meanwhile, histological examination alleviated that captopril + SNX remarkably inhibited renal injury, including tubular disorder, inflammatory cell infiltration and fibrosis. They down-regulated the serum levels of BUN and Cr, protein expression of IL-1ß, NF-κB, Bax, Cyt c, caspase 3, 8 and 9 in kidney tissues and significantly increased the levels of Bcl-2 in kidney tissues compared with monotherapy group. CONCLUSION: The combinatorial treatment of SNX and captopril lowered blood pressure through adjusting NO/NOS, ET-1 and dyslipidemia profile. Furthermore, this treatment alleviated the kidney damage via reducing the release of inflammatory factors and the expression of apoptotic markers. Therefore, these results provided a rationale for future clinical use of SNX combined with captopril in antihypertensive and protecting renal functions in hypertension.

3.
ACS Sens ; 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31927913

RESUMO

Label-free imaging and investigation of living cells are significant for many biomedical studies. It has been challenging to detect the epithelial-mesenchymal transition of cells in situ without affecting cellular activity. Here, we present a common-path differential confocal microscope based on the polarization-sensitive absorption of graphene to realize high-performance refractive index imaging and differentiation of living colorectal cancer cells (HCT116) with large detecting depth (1.29 µm), excellent refractive index resolution (2.86 × 10-5 RIU), and high spatial resolution (727 nm) simultaneously. Compared with epithelial (parental HCT116) cells, mesenchymal (paclitaxel-resistant HCT116) cells manifest generally lower refractive index values through the refractive index statistics, which is due to the stronger migration ability and weaker surface adherence of mesenchymal cells. The graphene-based microscopy provides an effective label-free approach to high-resolution imaging and study of living cell kinetics, and we expect it to be widely used in the research fields of pathology, tumorigenesis, and chemotherapy.

4.
Arch Oral Biol ; 110: 104605, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31751919

RESUMO

OBJECTIVE: The neuronal wiskott-aldrich syndrome protein (N-WASP) is a member of the wiskott-aldrich syndrome protein (WASP) family. N-WASP plays a vital role in promoting cell migration, receptor signaling and immune inflammatory responses. This study aimed to observe the changes in the expression of inflammatory factors and involving pathways after N-WASP knockdown in human gingival fibroblasts (HGFs). DESIGN: Gingival inflammatory condition of N-WASP knockout mice was evaluated by H&E staining. N-WASP in HGFs was knockdown by siRNA and the best knockdown efficiency was determined by qRT-PCR and immunofluorescence. The mRNA levels of interleukin (IL)-6, IL-8, C-C motif ligand 2 (CCL2), superoxide dismutase 2 (SOD2) and prostaglandin endoperoxide synthase 2 (PTGS2) were evaluated by qRT-PCR after N-WASP knockdown with or without mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) inhibitors. The protein levels of IL-6, IL-8 and CCL2 were assessed by ELISA. Western blotting was used to detect the activation of NF-κB and MAPK signaling pathways. RESULTS: Gingival tissue from N-WASP knockout mice exhibited an inflammatory reaction. The expression of IL-6, IL-8, CCL2, SOD2 and PTGS2 was significantly upregulated after N-WASP knockdown in HGFs for 6, 24 and 48 h, except for the SOD2 at 6 h. N-WASP knockdown significantly activated the signaling pathways of NF-κB and MAPK. The inhibitors of p65, p38, ERK and JNK clearly decreased IL-6, IL-8, CCL2, SOD2 and PTGS2 expression after N-WASP knockdown. CONCLUSION: These data indicated that N-WASP deficiency in HGFs increases the production of inflammatory cytokine and is regulated via NF-κB and MAPK signaling pathways.

5.
Zootaxa ; 4585(2): zootaxa.4585.2.8, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31716173

RESUMO

A new genus and species of Cydnidae, Punctacorona triplosticha gen. et sp. nov. (Heteroptera: Pentatomomorpha) is described and illustrated from Myanmar amber. This new genus is established based on its forewing anterior margin angulated, clavus narrow, with three rows of distinct punctures, metapleuron neighboring to posterior margin of evaporatorium carinate. A comparison between the new species and the Chilamnestocoris mixtus Lis et al. 2018 from Myanmar is provided.


Assuntos
Gastrópodes , Heterópteros , Âmbar , Animais , Fósseis , Mianmar
6.
Biosens Bioelectron ; 145: 111729, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31581071

RESUMO

Sensitive and specific detection methods are critical to the detection of glycoproteins. Immunoassay has been a powerful tool for this purpose, in which antibodies or their mimics particularly molecularly imprinted polymers (MIPs) are used for specific recognition. Epitope and glycan are two structure features of a glycoprotein. However, immunoassays based on simultaneous recognition towards the two characteristics have been scarcely explored so far. Herein we present a new strategy called orthogonal dual molecularly imprinted polymer-based plasmonic immunosandwich assay (odMIP-PISA). It relies on double recognition towards a target glycoprotein by two different types of MIPs, using epitope-imprinted gold nanoparticles (AuNPs)-coated slide as capturing substrate to recognize the peptide epitope and glycans-imprinted Raman-active silver nanoparticles as labeling nanotags to recognize the glycans. Carcinoembryonic antigen (CEA), a routinely used marker for colon cancer, was used as a test glycoprotein. The orthogonal double recognition apparently improved the specificity, reducing the maximum cross-reactivity from 14.4% for epitope recognition and 15.2% for glycan recognition to 8.2% for double recognition. Meanwhile, the plasmonic nanostructure-based Raman detection provided ultrahigh sensitivity, yielding a limit of detection of 5.56 × 10-14 M (S/N = 10). Through measuring the CEA level in human serum, this method permitted differentiation of colon cancer patient from healthy individual. Compared with the traditional immunoassay, odMIP-PISA exhibited multiple advantages, including simplified procedure (6 steps), speed (30 min), reduced cost, and so on. Therefore, this new approach holds great promise in many applications particularly clinical diagnosis.

7.
Anal Chem ; 91(21): 13847-13854, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31575114

RESUMO

Emerging nanomaterials such as nanozymes have recently been applied for the immunoassay-based detection of biomarkers. However, the inferior catalytic activity and low water solubility of nanozymes remain as the major limitations compared to natural enzymes. To overcome these limitations, we successfully synthesized a superior nanozyme with a structure of enriched 2D catalytic interface, namely Nanozyme Nest, which was composed of Fe-based metal-organic frameworks (Fe-MOF) and graphene oxide (GO). Then, we applied it in an ultrasensitive enzyme-linked immunosorbent assay (ELISA) for the detection of benzo[a]pyrene-7,8-diol 9,10-epoxide-DNA adduct (BPDE-DNA), which is a metabolite of benzo[a]pyrene (BP) and used as a typical biomarker of woodsmoke exposure in human blood. The Nanozyme Nest features amplified peroxidase-like catalytic ability from graphene and Fe-MOF due to their large surface area and abundant active sites. By using the proposed Nanozyme Nest-based ultrasensitive ELISA, the BPDE-DNA could be detected at a level as low as 0.268 ng/mL, and the obtained sensitivity was much higher than most of the widely used methods. Our work provides a novel strategy to design ultrasensitive immunosensors with advantages of amplified catalytic activity and improved water solubility compared to classic nanozymes. This illustrates the promising applications of the Nanozyme Nest-based immunosensors in point-of-care settings to conveniently detect exposures and diagnose diseases.

8.
Anal Chim Acta ; 1086: 75-81, 2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31561796

RESUMO

The development of some sensitive methods for MUC1 is critical for preclinical diagnosis of tumors. In this experiment, we built a triple-amplified electrochemical aptasensor to achieve sensitive detection of MUC1, which was based on exonuclease III (Exo III)-assisted with strand displacement reaction and enzyme catalytic strategy. Firstly, with the help of Exo III, MUC1 and aptamer could be recycled during the cycle I, the single stranded DNA-1 (S-1) was produced during the process and was introduced to the hybride reaction on the electrode. Secondly, during the cycle II, strand displacement reaction was triggered on the electrode with the adding of hairpin DNA-2 (H-2). Thirdly, after the gold nanoparticles (AuNPs)-DNA-enzyme conjugates hybrided with the H-2 on the electrode, the AuNPs-DNA-enzyme conjugates could act as signal probe to produce electrochemical catalytic signal. We used the fabricated triple-amplified electrochemical aptasensor that could detect MUC1 from 0.1 pg mL-1 to 10 ng mL-1 with the detection limit of 0.04 pg mL-1 under the optimized experimental conditions. The constructed triple-amplified electrochemical aptasensor could be applied in real samples determination. Besides, the strategy can be applied to detect other proteins for health monitoring.

9.
Anal Chem ; 91(15): 9993-10000, 2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31347834

RESUMO

Molecularly imprinted polymers (MIPs), which are synthesized in the presence of a template, have been widely used as antibody mimics for important applications. Through the combination with a highly sensitive detection scheme such as chemiluminescence and surface-enhanced Raman scattering (SERS), MIP-based sandwich assays have emerged as promising analytical tools for the detection of disease biomarkers. However, so far, MIPs have been used only as target-capturing probes, whereas labeling by other means was needed, which limits the application range. Herein, we present a new approach, called a dual MIP-based plasmonic immunosandwich assay (duMIP-PISA), for the specific and sensitive detection of protein biomarkers in complex biological samples. A C-terminal epitope-imprinted self-assembled gold nanoparticle monolayer-coated glass slide was prepared as a plasmonic substrate for the specific extraction of target protein, while N-terminal epitope-imprinted Raman-responsive Ag@SiO2 nanoparticles were prepared as nanotags for the specific labeling of captured protein. The formed MIP-protein-MIP sandwich-like complexes could produce a significantly enhanced SERS signal. The dual MIP-based recognitions ensured high specificity of the assay, while SERS detection provided ultrahigh sensitivity. The duMIP-PISA of neuron-specific enolase (NSE) in human serums was demonstrated, which permitted the differentiation of small cell lung cancer patients from healthy individuals. As compared to regular ELISA, the duMIP-PISA exhibited multiple merits including a simpler procedure, faster speed, lower sample volume requirement, and wider linear range. The approach well demonstrated the great potentials of MIPs and can be easily modified and extended to other protein biomarkers. Therefore, the duMIP-PISA approach holds great promise in many important applications such as disease diagnosis.

10.
Environ Sci Pollut Res Int ; 26(26): 27372-27384, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321725

RESUMO

In order to enhance the removal of Sb(III) in wastewater, hyperbranched polyamide-functionalized sodium alginate (HA@SA) microsphere was prepared by grafting of hyperbranched polyamide (HA) on the surface of sodium alginate (SA) microsphere. Adsorption properties of Sb(III) were investigated via static and dynamic adsorption tests. The cycling reusability of HA@SA microspheres was explored through adsorption-desorption tests. The changes of HA@SA microspheres before and after adsorption were characterized by FT-IR, SEM-EDS, and XPS. Results showed that the maximum Sb(III) adsorption capacity of HA@SA microspheres reached up to 195.7 mg/g, improved by 1.16 times in comparison with SA microspheres. The Sb(III) adsorption processes of HA@SA microspheres were depicted by pseudo-second-order kinetics and the Langmuir isotherm models with accuracy. It covered a homogeneous single-layer adsorption controlled by chemisorption along with exotherm spontaneously. After recycling for 8 times, the adsorption capacity of HA@SA microspheres still retained higher than 90% of the original value.


Assuntos
Alginatos/química , Antimônio/isolamento & purificação , Nylons/química , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Antimônio/química , Concentração de Íons de Hidrogênio , Cinética , Microscopia Eletrônica de Varredura , Microesferas , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura Ambiente , Fatores de Tempo , Águas Residuárias/química , Poluentes Químicos da Água/química
11.
J Colloid Interface Sci ; 553: 220-227, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31203006

RESUMO

A polyvinylidene fluoride (PVDF) organic conductive membrane with photoelectric activity was successfully developed via printing of oxidant (FeCl3·6H2O) layer by layer and then chemical vapor deposition (CVD) of Poly (3, 4-ethylenedioxythiophene) (PEDOT). Four kinds of membranes were prepared by changing the number of oxidant coatings layers. The structure and photoelectric properties of four membranes were well characterized. The photocurrent density of 3.7 × 10-4 A indicated that the four-oxidant coating layers membrane achieved the best performance in photo-electricity activity. A comprehensive study of degradation efficiency under different photoelectric conditions was carried out. Results showed that the photoelectrocatalytic removal of tetracycline hydrochloride was 1.6 and 7.9 times higher than that of photocatalysis and photolysis, respectively, under a voltage of 3 V assisted with visible light irradiation. The anti-interference and stability tests in continuous filtration process demonstrated that the dissolved organic matters (DOMs) can result in a 30% fluctuation on removal rate. The streaming potential tests of DOMs adsorption on membrane surface indicated that the more obvious the adsorption phenomenon was, the degradation of tetracycline hydrochloride was weaker. The degradation intermediates were identified and pathways were proposed in this work. The photoelectrocatalysis of PEDOT modified PVDF membrane provided a new potential for water purification.

12.
Biosens Bioelectron ; 141: 111450, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247454

RESUMO

Nanozymes have fascinated increasing attention in the field of artificial enzyme. Designing an ideal nanozyme usually requires a synergic advantage of reasonable nanostructures and large specific surface area for ensuring excellent mimicking-enzyme catalytic activity. Here we report a CuS nanozyme with hollow nanocube structure (h-CuS NCs), which has a large surface area of 57.84 m2 g-1, and thus realizes excellent mimicking-enzyme catalytic activity. Expectedly, our directed design of h-CuS NCs nanozymes has an affinity for H2O2 of 0.94 mM, which is outstanding among the state-of-the-art Cu-based nanozymes. Furthermore, this nanozyme acts as a multifunctional catalyst to induce luminol chemiluminescence and oxide 3, 3', 5, 5'-tetramethylbenzidine (TMB) in the presence of H2O2, and displays distinguished electrocatalytic activity to glucose oxidation. More intriguingly, the nanozyme can produce a promising photothermal effect under the illumination of near-infrared light. This work will provide a prototype for rational design of distinct nanostructures as multifunctional nanozymes in the area of electrochemical sensing, mimicking-enzyme catalytic biosening and cancer therapy.


Assuntos
Colorimetria/métodos , Cobre/química , Dopamina/análise , Glucose/análise , Nanoestruturas/química , Sulfetos/química , Benzidinas/química , Técnicas Biossensoriais/métodos , Catálise , Técnicas Eletroquímicas/métodos , Peróxido de Hidrogênio/química , Substâncias Luminescentes/química , Luminol/química , Nanoestruturas/ultraestrutura , Oxirredução
13.
Int J Cardiovasc Imaging ; 35(10): 1841-1851, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31134413

RESUMO

Preoperative optimal selection of the occluder size is crucial in percutaneous left atrial appendage (LAA) occlusion, and the maximal width of the LAA orifice is the main reference index, however it can not fully meet the practical operation requirements. We retrospectively analyzed three-dimensional (3D) transesophageal echocardiography (TEE) and computed tomography (CT) imaging dataset of the 41 patients who underwent LAA occlusion with LAmbre™ system. The LAA orifice parameters were overall evaluated to determine their role in device size selection. Eight LAA 3D models of the four cases who had been replaced their device during the procedure based on TEE and CT were printed out to verify the optimal parameter decision strategy. There was a significant concordance of the results between 3D TEE and CT in the LAA orifice evaluation. The correlations between the perimeter and maximal width measurements by 3D TEE and the closure disk of the device were stronger than that between the area measurements and the closure disk (r = 0.93, 0.95, 0.86, respectively and p < 0.001 all), and the result was similar to that by CT (r = 0.92, 0.93, 0.84, respectively and p < 0.001 all). The ratios of the maximal width to the minimal width of the four cases were all > 1.4, however the rest 37 cases were all ≤ 1.4. Based on the comprehensive assessment of the LAA orifice perimeter and maximal width of the 3D printed models, the experiments were all succeed just for one try. The LAA orifice perimeter of 3D printed model based on 3D TEE may help in choosing the optimal device size of LAmbre™, especially for the LAA with flater ostial shape.


Assuntos
Apêndice Atrial/diagnóstico por imagem , Fibrilação Atrial/terapia , Cateterismo Cardíaco/instrumentação , Ecocardiografia Tridimensional , Ecocardiografia Transesofagiana , Impressão Tridimensional , Dispositivo para Oclusão Septal , Apêndice Atrial/fisiopatologia , Fibrilação Atrial/diagnóstico por imagem , Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo , Tomada de Decisão Clínica , Humanos , Modelos Anatômicos , Modelos Cardiovasculares , Variações Dependentes do Observador , Seleção de Pacientes , Valor Preditivo dos Testes , Desenho de Prótese , Reprodutibilidade dos Testes , Estudos Retrospectivos , Resultado do Tratamento
14.
Chem Sci ; 10(6): 1831-1835, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30842851

RESUMO

Molecularly imprinted polymers (MIPs) are chemically synthesized materials mimicking the recognition of antibodies towards antigens. Epitope imprinting has been an effective strategy, making imprinting of proteins flexible to a great extent. However, so far there is apparently a lack of facile and versatile epitope imprinting approaches. Herein, we present a new method called controllable oriented surface imprinting of boronate affinity-anchored epitopes. In this method, a C-terminus nonapeptide epitope was glycated and anchored as a template onto a boronic acid-functionalized substrate, followed by controllable oriented surface imprinting via the polycondensation of multiple silylating reagents containing functionalities capable of interacting with the epitope. The developed imprinting approach allowed for precise control of the thickness of the imprinting layer through adjusting the imprinting time, generating excellent binding properties. This method was verified to be versatile and efficient. Thus, it could greatly facilitate the preparation of MIPs for specific recognition of proteins and peptides.

15.
Anal Chem ; 91(7): 4831-4837, 2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30827094

RESUMO

Molecularly imprinted polymers (MIPs) and aptamers, as effective mimics of antibodies, can overcome only some drawbacks of antibodies. Since they have their own advantages and disadvantages, the combination of MIPs with aptamers could be an ideal solution to produce hybrid alternatives with improved properties and desirable features. Although quite a few attempts have been made in this direction, a facile and controllable approach for the preparation of aptamer-MIP hybrids still remains lacking. Herein, we present a new approach for facile and controllable preparation of aptamer-MIP hybrids for high-specificity and high-affinity recognition toward proteins. An aptamer that can bind the glycoprotein alkaline phosphatase (ALP) with relative weak affinity and specificity was used as a ligand, and controllable oriented surface imprinting was carried out with an in-water self-polymerization system of dopamine. A thin layer of polydopamine was formed to cover the template to an appropriate thickness. After removing the template from the polymer, an aptamer-MIP hybrid with apparently improved affinity and specificity toward ALP was obtained, giving cross-reactivity of 3.2-5.6% and a dissociation constant of 1.5 nM. With this aptamer-MIP hybrid, a plasmonic immunosandwich assay (PISA) was developed. Reliable detection of ALP in human serum by the PISA was demonstrated.

16.
ACS Chem Neurosci ; 10(3): 1222-1229, 2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30721026

RESUMO

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has emerged as a label-free analytical tool for fast biomolecule profiling on tissue sections. Among various functional molecules, mapping neurotransmitters and related metabolites is of tremendous significance, as these compounds are critical to signaling in the central nervous system. Here, we demonstrated the use of both derivatization and reaction-free approaches that greatly reduced signal complexity and thus enabled complementary signaling molecule visualization on crab brain sections via MALDI-LTQ-Orbitrap XL platform. Pyrylium salt served as a primary amine derivatization reagent and produced prominent signal enhancement of multiple neurotransmitters, including dopamine, serotonin, γ-aminobutyric acid, and histamine that were not detected in underivatized tissues. Molecules with other functional groups, such as acetylcholine and phosphocholine, were directly imaged after matrix application. The identities of discovered neurotransmitters were verified by standards using LC-MS/MS. This study broadens our understanding of metabolic signaling in the crustacean nervous system and highlights potential of multifaceted MS techniques for unambiguous neurotransmitter characterization.

17.
Xenobiotica ; 49(10): 1158-1163, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30484368

RESUMO

Parthenolide (PTL) and micheliolide (MCL) are sesquiterpene lactones with similar structures, and both of them have been reported to exhibit multiple biochemical and pharmacological activities. This study aims to investigate the inhibition of these two compounds on the activity of UDP-glucuronosyltransferases (UGTs). In vitro incubation mixture for recombinant UGTs-catalyzed glucuronidation metabolism of 4-methylumbelliferone (4-MU) was utilized to investigate the inhibition potential. Inhibition kinetics (including inhibition type and parameters) were determined, and in silico docking was employed to elucidate the inhibition difference between PTL and MCL on UGT1A1. MCL showed no inhibition toward all the UGT isoforms, and PTL showed strong inhibition toward UGT1A1. The half-maximal inhibitory concentration (IC50) of PTL on the activity of UGT1A1 was determined to be 64.4 µM. Inhibition kinetics determination showed that PTL exerted noncompetitive inhibition toward UGT1A1, and the inhibition kinetic constant (Ki) was determined to be 12.1 µM. In silico docking method has been employed to show that hydrogen bonds between PTL and the activity cavity of UGT1A1 contributed to the stronger inhibition of PTL on the activity of UGT1A1 than MCL. In conclusion, PTL can more easily induce drug-drug interaction (DDI) with clinical drugs mainly undergoing UGT1A1-catalyzed glucuronidation.


Assuntos
Inibidores Enzimáticos , Glucuronosiltransferase/antagonistas & inibidores , Glucuronosiltransferase/química , Sesquiterpenos de Guaiano , Sesquiterpenos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Sesquiterpenos/química , Sesquiterpenos/farmacocinética , Sesquiterpenos/farmacologia , Sesquiterpenos de Guaiano/química , Sesquiterpenos de Guaiano/farmacocinética , Sesquiterpenos de Guaiano/farmacologia
18.
Anat Rec (Hoboken) ; 302(6): 941-946, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30365237

RESUMO

Identification of genomic alterations from formalin-fixed paraffin-embedded (FFPE) samples using next-generation sequencing (NGS) is very important for cancer-targeted therapy today. To achieve a higher efficiency and shorter turn-around time for NGS library preparation, here, we compared NGS library preparation processes and outcomes with three commercial library construction methods and two hybridization capture methods thus, developed an improved NGS library construction approach. This improved approach took advantage of both methods and resulted in a higher output from the same input DNA, including higher library construction success rate, higher probe capture rate, and shorter turn-around time. Using this approach, targeted region libraries could be constructed within only 1 day for FFPE samples; therefore, this approach has potential applications of NGS in routine clinical tests. Anat Rec, 302:941-946, 2019. © 2018 Wiley Periodicals, Inc.

19.
Cancer Sci ; 110(1): 379-388, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30375704

RESUMO

Paclitaxel is a widely used chemotherapy drug, but development of resistance leads to treatment failure. Tumor cells that are treated with a sublethal dose of paclitaxel for a long period of time show the epithelial-mesenchymal transition (EMT) phenotype, which leads to metastasis and resistance. All-trans retinoic acid (ATRA) is always used in combination with paclitaxel and can reverse EMT in many types of cancer cells. The ability of ATRA to reverse EMT in chemoresistant cells is still unknown. In the present study, the ability of ATRA to reverse EMT in paclitaxel-resistant cells was investigated. Three colorectal cancer cell lines, HCT116, LoVo and CT26, were treated with sublethal doses of paclitaxel to create resistant cell lines. Western blotting, immunocytochemistry, and "parachute" dye-coupling assays showed that ATRA reverses EMT, inhibits nuclear factor kappa B (NF-κΒ), and upregulates gap junctions in paclitaxel-resistant cells. Scratch wound-healing and Transwell assays showed that ATRA decreases the migration and invasion abilities of paclitaxel-resistant cells. In addition, the CT26 cell line was used in the Balb/c pulmonary metastasis model to show that ATRA reduces metastasis of paclitaxel-resistant cells in vivo. Given these data, ATRA may reverse EMT by inhibiting NF-κΒ and upregulating gap junctions in paclitaxel-resistant cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Junções Comunicantes/efeitos dos fármacos , NF-kappa B/metabolismo , Paclitaxel/farmacologia , Tretinoína/farmacologia , Animais , Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Linhagem Celular Tumoral , Conexina 43/genética , Conexina 43/metabolismo , Feminino , Junções Comunicantes/genética , Junções Comunicantes/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Anal Chim Acta ; 1043: 142-149, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30392662

RESUMO

Flexible electrochemical sensors for measurement and quantification of biomarkers are attracting a great deal of attention in non-invasive medical applications, due to their high mechanical compatibility and conformability with the human body. Realization of the full potential of such novel systems relies heavily on their effective manufacturing. Particularly, there is a need for manufacturing techniques that can realize complex designs, consisting of multiple functional materials which are required for sensor functionality. Among emerging additive manufacturing techniques, Direct-Ink-Writing (DIW), where polymer nanocomposite inks are dispensed through nozzles and deposited with high spatial control, carries a great potential to address this need. Here, we introduce a 3D printed flexible electrochemical biosensor for glucose detection. We show that our biosensor works linearly in glucose solution with a concentration range between 100 and 1000 µM. The sensitivity of glucose biosensor is estimated to be 17.5 nA µM-1, and the calculated value of the detection limit (S/N = 3) is 6.9 µM. The demonstrated electrochemical performance and surface properties of the printed sensors show the promising advantages of using this technique over the conventional screen printing method. These advantages include higher sensitivity and specificity and, reduced material consumption.


Assuntos
Técnicas Biossensoriais/métodos , Glucose/análise , Técnicas Eletroquímicas , Eletrodos , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Estudos de Viabilidade , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Humanos , Tinta , Limite de Detecção , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA