Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 361
Filtrar
1.
J Colloid Interface Sci ; 607(Pt 1): 134-144, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34500414

RESUMO

HYPOTHESIS: The synthesis and characterization of aminated nanocrystalline cellulose (ANCC), a new member of the hairy nanocellulose family, is reported. Hairy nanocelluloses consist of a crystalline rod-like body with amorphous cellulose chains ("hairs") at both ends, on which various functional groups can be accommodated. In ANCC these groups are reactive primary amine groups, which are useful for bioconjugation- and Schiff base-centered modifications. We hypothesize that a two-step oxidation-reductive amination of cellulose fibers followed by hydrothermal treatment will result in the formation of rod-like hairy ANCC. EXPERIMENTS: ANCC was prepared by converting the aldehyde groups in cellulose, introduced by a periodate oxidation, to primary amines using ammonia and sodium borohydride, followed by a hot water treatment, during which diamine modified cellulose fibers were converted to ANCC. ANCC was characterized by AFM, TEM, DLS, ELS, FTIR, NMR, XPS and conductometric titration. Antibacterial activity of ANCC was assessed by the viable cell counting method. FINDINGS: ANCC, with an amine content of 5.5 mmol g-1 is a bare nanocolloid (i.e. non-coated, without adsorbed polyelectrolytes or surfactants) which, as far as we know, has a positive charge density larger than any other bare cationic nanocolloid. It was observed that ANCC particles have a needle-like morphology with a width of ~ 5 nm and a length ~ 120 nm. DLS results proof that ANCC is hairy. Spectroscopic analysis confirmed the introduction of surface primary amine groups. ANCC showed promising bactericidal activities, against Gram-negative species due to their thinner and penetrable cell wall.


Assuntos
Celulose , Tensoativos , Aminação , Cátions , Oxirredução
2.
ACS Omega ; 6(47): 31891-31900, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34870011

RESUMO

In developing a proton exchange membrane fuel cell, a high current density is encountered, thus requiring a novel flow field with great drainage performance. Our previous study proposed a novel compound flow field called an active drainage flow field with three inlets, which has an excellent output and drainage performance. Furthermore, the influence of muti-inlet reactant gas allocation on the three inlets is discussed in this study. The results showed that the small mass flow in the active drainage (AD) channel causes a waste of active area, while the large mass flow in the AD channel causes under-ribs convection. Considering the output and drainage performance, the 15% AD mass flow case shows the best performance under the high relative humidity investigation.

3.
Am J Cancer Res ; 11(11): 5282-5298, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34873461

RESUMO

As the key enzyme of the N6-methyladenosine (m6A) in eukaryotic messenger RNA, METTL3 plays an important role in tumor progression, but the exact mechanism by which METTL3 controls oral squamous cell carcinoma (OSCC) progression remains unclear. In this study, METTL3 expression in OSCC samples was analyzed by qPCR and immunohistochemistry. The effects of METTL3 suppression on OSCC cell lines were measured by CCK-8, Ki67 flow cytometry analysis, invasion transwell and wound healing assays. MeRIP-seq and RNA-seq analyses were performed to explore target gene of METTL3. RIP-qPCR and RNA stability assays were performed to explore the mechanism by which METTL3 regulated the target genes. Triptolide was used to evaluate its specific treatment effects on METTL3 in OSCC cells. BALB/c nude mice were used to establish orthotopic and subcutaneous xenograft models to verify the in vitro results. The results showed that METTL3 was upregulated in OSCC tissues compared with OSCC adjacent normal tissues, and its expression was associated with T stage, lymphatic metastasis and prognosis. METTL3 suppression impaired OSCC cells proliferation, invasion, and migration. MeRIP-seq and RNA-seq analysis identified that SLC7A11 mRNA was the m6A target of METTL3, which was verified by meRIP-qPCR, qPCR and western blot. METTL3 depletion decreased the stability of SLC7A11 mRNA, and IGF2BP2 as m6A reader was involved in this process. Moreover, METTL3 knockdown attenuated the binding between SLC7A11 mRNA and IGF2BP2, finally leading to accelerate SLC7A11 mRNA degradation. Triptolide inhibited METTL3-mediated SLC7A11 expression, thus suppressing malignancy of OSCC cells. In conclusion, the new finding of the manuscript is that METTL3 enhances the mRNA stability of SLC7A11 via m6A-mediated binding of IGF2BP2, which thus promotes OSCC progression, and triptolide inhibits OSCC by suppressing METTL3-SLC7A11 axis. Triptolide has a potential to be as an effective anti-OSCC drug targeted to METTL3.

4.
Front Oncol ; 11: 735993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900686

RESUMO

Simple Summary: Clinically, aberrant lipid metabolism is responsible for overweight and/or obesity. Overweight is considered as an independent factor of cancer risk in 2019. Therefore, lipid metabolic reprogramming is an emerging hallmark of malignancy. It is an urgent need to comprehensively understand the relationship among lipid metabolism and HNSCC and identify a valuable biomarker for predicting prognosis of HNSCC patients. Three new findings were found in this study. Firstly, we identified the lipid-related differentially expressed genes (DEGs) by using the GEO microarrays and TCGA dataset. A novel lipid-related mRNA prognostic signature (LRPS, consisting of ADCY2, LIPE and OLR1) was developed, which could predict the survival and prognosis of HNSCC patients as an independent effective prognostic factor. Secondly, we found that the LRPS could indicate the type of infiltrated immune cells in HNSCC tumor microenvironment. Thirdly, we verified that the LPPS score could interpret the TP53 status of HNSCC. Our new findings indicated that LRPS has a potential to be a promising indicator of overall survival, TP53 status, and immune characteristics in HNSCC, and perhaps can monitor and guide the treatment efficacy and prognosis of HNSCC in the future. Background: Head and neck squamous cell carcinoma (HNSCC) is characterized by a high frequency of lymph node metastasis and a high mortality. Lipid metabolic reprogramming is an emerging carcinogen as its role in fulfilling cancer growth and spread. However, little is known about the correlation between lipid metabolism and HNSCC. Materials and Methods: Expressions of lipid-related genes were obtained from the Cancer Genome Atlas (TCGA) and Gene expression Omnibus (GEO) databases for differential and functional analyses. A total number of 498 patients from TCGA with complete information were included to identify a lipid-related prognostic signature (LRPS), based on ADCY2, LIPE, and OLR1, by using univariate and multivariate Cox regression analyses. LRPS-high and LRPS-low groups were accordingly divided to pathway and cell enrichment analyses. Results: LRS-low patients had a better overall survival and relapse - free survival than LRS-high ones in HNSCC. The LRPS-high group was significantly related to perineural invasion of cancer, cancer-related pathways, high TP53 mutation rate, high proportion of natural killer T cells (NKT), dendritic cells, monocytes, Treg, and M1 and M2 macrophage infiltration in HNSCC tumor tissues. Conversely, the LRPS-low group correlated with DNA damage-related and T-cell-regulated pathways, low frequency of mutated TP53, and high infiltration of B cells and CD4+ effector cells including Th1 and Th2. Conclusion: LRPS has a potential to be a promising indicator of overall survival, prognosis, TP53 status, and immune characteristics in HNSCC.

5.
ACS Omega ; 6(50): 34314-34326, 2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34963917

RESUMO

Waste cotton sheets (WCS) are promising cellulose sources due to their high content of cellulose and large amount of disposal every year, which could be recycled and employed as low-cost structural materials. The present work aims at investigating the efficacy of hydrogel adsorbents prepared from regenerated WCS as the carriers of activated carbon (AC) for treating the dye-contaminated water. Activated WCS was directly dissolved in lithium chloride/N,N-dimethylacetamide (LiCl/DMAc) solvent and then regenerated into cellulose hydrogels, which were employed as three-dimensional biodegradable matrices for loading an extremely high content of AC (up to 5000%). The morphology and properties of resultant adsorbents were studied in detail. The results showed that different washing methods and contents of AC and cellulose had obvious effects on water contents, mechanical properties, and adsorption capacities of AC/WCS hydrogels. Especially, the hydrogels containing high AC content washed by gradient ethanol solvent exhibited outstanding compressive strengths of up to 3.0 MPa at 60% strain, while the adsorption capacity of 5000%AC/0.3CS toward a model dye methylene blue (MB, initial concentration of 200 mg/L) reached 174.71 mg/g at pH 6.9 and 35 °C. This was comparable to the adsorption capacity of original AC powders, while no AC powders were released from hydrogels to water. The adsorption of MB followed the Dubinin-Astakhov model and pseudo-first-order mechanism. Thermodynamic studies showed the spontaneous and endothermic nature of the overall physical adsorption process. Therefore, this work demonstrates the feasibility to recycle WCS into biodegradable carriers of functional compounds, and the AC/regenerated cellulose hydrogels have a high potential as a promising adsorbent with low-cost and convenient separation for dye removal from wastewater.

6.
J Hazard Mater ; : 127777, 2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34838366

RESUMO

We investigated the spatiotemporal distribution and sources of cellular oxidative potential (OP) in the Midwest US. Weekly samples were collected from three urban [Chicago (IL), Indianapolis (IN), and St. Louis (MO)], one rural [Bondville (IL], and one roadside site [Champaign (IL)] for a year (May 2018 to May 2019), and analyzed for water-soluble cellular OP using a macrophage reactive oxygen species (ROS) assay. Chemical composition of the samples including several carbonaceous components, inorganic ions, and water-soluble elementals, were also analyzed. The emission sources contributing to water-soluble cellular OP and PM2.5 mass were analyzed using positive matrix factorization. The secondary organic aerosols contributed substantially (≥54%) to PM2.5 cellular OP at urban sites, while the roadside and rural OP were dominated by road dust (54%) and agricultural activities (62%), respectively. However, none of these sources contributed substantially to the PM2.5 mass (≤21%). Other sources contributing significantly to the PM2.5 mass, i.e., secondary sulfate and nitrate, biomass burning and coal combustion (14-26%) contributed minimally to the cellular OP (≤13%). Such divergent profiles of the emission sources contributing to cellular OP vs. PM2.5 mass demonstrate the need of considering more health-relevant metrics such as OP in the design of air pollution control strategies.

7.
Front Genet ; 12: 748111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737766

RESUMO

Cleidocranial dysplasia (CCD) is an autosomal dominant inheritable skeletal disorder characterized by cranial dysplasia, clavicle hypoplasia, and dental abnormalities. Mutations involving Runt-related transcription factor 2 (RUNX2) are currently the only known molecular etiology for CCD but are not identified in all CCD patients. No RUNX2 abnormality can be detected in about 20-30% of patients, and the molecular cause remains unknown. The present study includes a family case with typical features of CCD. RUNX2 mutation was first screened by sequencing analysis, and no mutation was detected. Copy number alterations of the RUNX2 gene were then measured by quantitative PCR and multiplex ligation-dependent probe amplification (MLPA). No copy number variation in RUNX2 could be detected. We performed whole-exome sequencing (WES) to identify the underlying genetic mutations. Unexpectedly, no abnormalities could be detected in genes related to the RUNX2 signaling pathway. Therefore, it was supposed that other new unknown gene variations might contribute to the CCD phenotype. We focused on Immunoglobulin superfamily member 10 (IGSF10), a gene related to bone development. An IGSF10 frameshift mutation (c.6001_6002delCT, p.Leu2001Valfs*24) was detected by WES. Sanger sequencing verified that this mutation was only detected in the patient and her affected mother but not in her unaffected father. Bioinformatics studies demonstrated that this mutation could change the 3D structure of the IGSF10 protein and severely damage its function. In addition, alkaline phosphatase (ALP) activity and the ability to form mineralized nodules were inhibited by IGSF10 knockdown compared with normal controls. The expression of bone sialoprotein (BSP) was significantly reduced by IGSF10 knockdown, but not that of other osteogenic markers. Our results provide new genetic evidence that IGSF10 mutation might contribute to CCD.

8.
Chemosphere ; : 132628, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34687682

RESUMO

The released oil can affect the vulnerable shoreline environment if the oil spills happen in coastal waters. The stranded oil on shorelines is persistent, posing a long-term influence on the intertidal ecosystem after weathering. Therefore, shoreline cleanup techniques are required to remove the oil from the shoreline environment. In this study, a new shoreline cleanup initiative using chitosan/rhamnolipid (CS/RL) complex dispersion with pH-stimulus response was developed for oiled sand cleanup. The results of factorial and single-factor design revealed that the CS/RL complex dispersion maintained high removal efficiency for oiled sand with different levels of oil content in comparison to using rhamnolipid alone. However, the increase of salinity negatively affected the removal efficiency. The electrostatic screening effect of high ionic strength can hinder the formation of the CS/RL complex, and thus reduce removal efficiency. The pH-responsive characteristic of chitosan allows the easy separation of water and oil in washing effluent. The chitosan polyelectrolytes aggregated and precipitated due to the deprotonation of amino groups by adjusting the pH of the washing effluent to above 8. The microscope image demonstrated that the chitosan aggregates wrapped around the oil droplets and settled to the bottom together, thus achieving oil-water separation. Such pH-stimulus response may help achieve an easy oil-water separation after washing. These findings have important implications for developing the new strategies of oil spill response.

9.
ACS Omega ; 6(34): 21892-21899, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34497884

RESUMO

Excess water seriously affects the performance and lifetime of proton exchange membrane fuel cells (PEMFCs). This study proposes a novel compound flow field, which is named the active drainage flow field (ADFF). The new design enhances the drainage performance by under-ribs flow, while the output performance is very close to that of the conventional serpentine flow field (CSFF). Additionally, the ADFF bipolar plate has been taken as a cathode while retaining CSFF as an anode; the combination shows a good output performance under high relative humidity. The peak power density has reached to 0.59 W/cm2, which is 13% higher than that of the CSFF.

10.
J Hazard Mater ; 416: 125942, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492869

RESUMO

A novel Ralstonia Bcul-1 strain was isolated from soil samples that was closest to Ralstonia pickettii. Broad-spectrum resistance was identified to a group of heavy metal ions and tolerance to concentrations of Cd2+ up to 400 mg L-1. Low concentrations of heavy metal ions did not have distinctive impact on heavy metal resistance genes and appeared to induce greater expression. Under exposure to Cd2+, cell wall components were significantly enhanced, and some proteins were also simultaneously expressed allowing the bacteria to adapt to the high Cd2+ living environment. The maximum removal rate of Cd2+ by the Ralstonia Bcul-1 strain was 78.97% in the culture medium supplemented with 100 mg L-1 Cd2+. Ralstonia Bcul-1 was able to survive and grow in a low nutrient and cadmium contaminated (0.42 mg kg-1) vegetable soil, and the cadmium removal rate was up to 65.76% in 9th growth. Ralstonia Bcul-1 mixed with biochar could maintain sustainable growth of this strain in the soil up to 75 d and the adsorption efficiency of cadmium increased by 16.23-40.80% as compared to biochar application alone. Results from this work suggests that Ralstonia Bcul-1 is an ideal candidate for bioremediation of nutrient deficient heavy metal contaminated soil.


Assuntos
Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/toxicidade , Metais Pesados/toxicidade , Ralstonia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
11.
ACS Omega ; 6(36): 23274-23280, 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34549127

RESUMO

Homogeneous distribution of Mn-Fe oxides (xMn1Fe) with different Mn/Fe ratios was synthesized by a hydrolysis-driven redox method, and their catalytic activities in HCHO oxidation were investigated. The results showed that HCHO conversion was significantly improved after doping iron due to the synergistic effect between manganese and iron. The 5Mn1Fe catalyst exhibits excellent catalytic activity, achieving >90% HCHO conversion at 80 °C and nearly 100% conversion at 100 °C. The physicochemical properties of catalysts were characterized by BET, XRD, H2-TPR, O2-TPD, and XPS techniques. Experimental results revealed that the introduction of Fe into MnO x resulted in a large surface area, a high ratio of Mn4+, abundant lattice oxygen species and oxygen vacancy, and uniform distribution of Mn and Fe, thus facilitating the oxidation of HCHO to CO2 and H2O.

12.
Zhongguo Zhen Jiu ; 41(8): 906-12, 2021 Aug 12.
Artigo em Chinês | MEDLINE | ID: mdl-34369703

RESUMO

OBJECTIVE: To observe the changes of functional connectivity of brain pain-emotion regulation region in patients with cervical spondylosis of cervical type by functional magnetic resonance imaging (fMRI). METHODS: Thirty-two subjects were selected. Of them, 16 patients with cervical spondylosis of cervical type were divided into an observation group and 16 healthy subjects into a control group. The patients in the observation group were treated with acupuncture at Tianzhu (BL 10), Jingbailao (EX-HN 15), Jianzhongshu (SI 15) and ashi points for 30 min. The rest-state fMRI data was collected before and after acupuncture in the observation group. The subjects in the control group received no treatment, and the rest-state fMRI data was collected once. The visual analogue scale (VAS) score before and after treatment and the pain catastrophizing scale (PCS) score before treatment in the observation group were recorded. The resting-state brain functional imaging characteristics between the observation group and control group before treatment, between the observation group before and after treatment, were compared. Based on the brain functional connectivity of region of interest (ROI) the changes of functional connectivity in insula and ventral tegmental area (VTA) in emotional regulation brain region were observed, and the correlation between functional connectivity changes and VAS、PCS scores in patients of the observation group was analyzed. RESULTS: In the observation group, the VAS score was (1.94±1.12) after the treatment, which was lower than (5.62±1.20) before treatment (P<0.05). The PCS score before treatment was (19.18±8.42) in the observation group. Compared with the control group, the areas with increased functional connectivity with insula in the observation group before acupuncture included bilateral dorsolateral prefrontal lobe and right middle cingulate gyrus, and the areas with increased functional connectivity with VTA included right central posterior gyrus and right insula. In the observation group, the connectivity coefficient of left insula and left dorsolateral prefrontal lobe (r=0.438, P<0.05), the connectivity coefficient of right insula and right dorsolateral prefrontal lobe (r=0.483, P<0.05) were positively associated with the VAS score. In the observation group, the connectivity coefficient between the right insula and the right middle cingulate gyrus (r=-0.560, P<0.05), the connectivity coefficient between the right VTA and the right insula (r=-0.525, P<0.05) were negatively associated with the PCS score. After acupuncture, the areas with decreased functional connectivity with insula included bilateral posterior central gyrus, right anterior central gyrus, middle cingulate gyrus and left corpus callosum, while the bilateral suboccipital gyrus and left cerebellum showed increased functional connectivity with right insula. The areas with decreased functional connectivity with VTA included bilateral dorsomedial prefrontal cortex, left anterior cingulate gyrus, right middle temporal gyrus and left anterior cingulate gyrus. After acupuncture in the observation group, the functional connectivity of left VTA left dorsomedial prefrontal cortex and left anterior cingulate cortex (r=-0.548, P<0.05), the functional connectivity of right VTA-bilateral dorsomedial prefrontal cortex and left anterior cingulate cortex (r=-0.547, P<0.05) were negatively associated with the PCS score. CONCLUSION: Pain involves the formation and expression of "pain-emotion-cognition". Acupuncture can systematically regulate the brain functional connections between cognitive regions such as dorsal prefrontal lobe and anterior cingulate gyrus and emotional regions such as insula and VTA in patients with cervical spondylosis of cervical type, suggesting that acupuncture has a multi-dimensional and comprehensive regulation effect on pain.


Assuntos
Terapia por Acupuntura , Espondilose , Encéfalo/diagnóstico por imagem , Emoções , Humanos , Imageamento por Ressonância Magnética , Dor , Espondilose/diagnóstico por imagem , Espondilose/terapia
13.
Front Plant Sci ; 12: 665530, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386024

RESUMO

The plant metabolome is considered as a bridge between the genome and the phenome and is essential for the interaction between plant growth and the plant environment. Here, we used the liquid chromatography-tandem mass spectrometry method to perform a widely targeted metabolomics analysis of 150 millet germplasm and simultaneous identification and quantification of 330 annotated metabolites. Comparing the metabolic content of different millets revealed significant natural variation of both primary and secondary metabolites, including flavonoids, phenolamides, hydroxycinnamoyl derivatives, nucleotides, and lipids, in the millets from India and the north and south of China; among them, some of the flavonoids are the most prominent. A total of 2.2 TB sequence data were obtained by sequencing 150 accessions of foxtail millet using the Illumina platform. Further digging into the genetic basis of metabolites by mGWAS analysis found that cyanidin 3-O-glucoside and quercetin O-acetylhexside are concentratedly located at 43.55 Mb on chromosome 5 and 26.9 Mb on chromosome 7, and two Lc were mined as candidate genes, respectively. However, the signals of luteolin 7-O-glucoside and kaempferol 3-O-glucoside were also detected at 14.36 Mb on chromosome 3, and five glycosyltransferase genes on this loci were deemed to regulate their content. Our work is the first research to use mGWAS in millet, and it paves the way for future dissection of complex physiological traits in millet.

14.
Sci Total Environ ; 801: 149717, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34425443

RESUMO

Despite fresh and pyrogenic organic matter have been widely used as amendments to improve soil organic carbon (SOC) storage, mineralization that links to C quality and soil temperature, microbial community composition and enzyme activity remain poorly understood. This study aims to explore the effects of amendments (bamboo leaves and its biochar) and incubation temperature on mineralization, and disentangle the relationships of SOC mineralization with chemical composition of SOC, labile organic C, microbial community composition, and activities of enzymes in a subtropical bamboo forest soil. Results showed that cumulative soil CO2 emissions ranked as bamboo leaf (Leaf) > bamboo leaf biochar (Biochar) > Control, regardless of the incubation temperature. Compared to the control, the Leaf treatment markedly increased, whereas the Biochar treatment decreased, the temperature sensitivity of SOC mineralization (P < 0.05). The cumulative soil CO2 emission was positively correlated (P < 0.05) with water-soluble organic C (WSOC), microbial biomass C (MBC), O-alkyl C and alkyl C contents, and activities of ß-glucosidase and dehydrogenase, but negatively correlated (P < 0.01) with aromatic C content, regardless of the incubation temperature. This indicated that the lower SOC mineralization rate and lower temperature sensitivity in the Biochar (cf. Leaf) treatment were intimately associated with the lower WSOC, MBC, O-alkyl C content, and ß-glucosidase and dehydrogenase activities, and higher aromatic C content in the Biochar. The high relative abundance of bacteria relating SOC mineralization included Rhizobiales, Sphingobacteriales and JG30-KF-AS9, whereas that of fungi included Eurotiales, Sordariales, Agaricales and Helotiales. Our results revealed that the application of pyrogenic organic matter, as compared to the application of fresh organic matter, can reduce SOC mineralization and its temperature sensitivity in a subtropical forest soil by limiting the availability of C and microbial activity, and thus has a great potential for maintaining soil carbon stock in subtropical forest ecosystems.


Assuntos
Microbiota , Solo , Carbono , Carvão Vegetal , Florestas , Microbiologia do Solo
15.
Peptides ; 145: 170624, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375684

RESUMO

OBJECTIVE: The purpose of this study was to explore the effect of dulaglutide on DHEA induced PCOS rats and its mechanism, to provide new drugs and research directions for clinical treatment of PCOS. METHODS: In this study, the PCOS model was established by giving female SD rats subcutaneous injection of DHEA for 21 consecutive days. After modeling, the treatment group was injected subcutaneously with three doses of dulaglutide for 3 weeks. The model group was injected with sterile ultrapure water, and the normal group did not get any intervention. The body weight changes of rats in each group were recorded from the first day when rats received the administration of dulaglutide. Three weeks later, the rats were fasted the night after the last treatment, determined fasting insulin and fasting glucose the next day. After the rats were anesthetized by chloral hydrate, more blood was collected from the heart of the rat. The serum insulin, testosterone and sex hormone binding globulin (SHBG) levels were detected by the enzyme-linked immunoassay method. After removing the adipose tissue, the obtained rat ovary tissue was used for subsequent experimental detection, using HE staining for morphology and follicular development analysis; qRT-PCR for the detection of 3ßHSD, CYP17α1, CYP19α1, and StAR gene expression in ovarian tissue; and western blotting analysis of CYP17α1, CYP19α1, StAR protein expression and insulin level to verify whether dulaglutide has a therapeutic effect on PCOS in rats. RESULTS: After treated with different concentrations of dulaglutide, we found that the body weight of rats in the treatment groups were reduced. Compared with the rats in PCOS group, the serum androgen level of rats in the treatment groups was significantly decreased, and the serum sex hormone binding protein content was significantly increased, and there was statistically significant difference between these groups and PCOS group. In terms of protein expression and gene regulation, the expression of 3ßHSD, CYP19α1 and StAR in the ovarian tissue of rats in treatment groups were decreased significantly after received the treatment of dulaglutide, and there was statistically significant difference between these groups and PCOS group. In addition, dulaglutide reduced the insulin content in the ovarian tissue of PCOS rats. CONCLUSION: Dulaglutide may reduce the hyperandrogenemia of PCOS rats by regulating the content of serum SHBG and the expression of 3ßHSD, CYP19α1, and StAR related genes and proteins, thereby inhibiting the excessive development of small follicles and the formation of cystic follicles in the ovaries of PCOS rats, thereby improving polycystic ovary in PCOS rats. In addition, dulaglutide may reduce the weight of PCOS rats, further reducing the level of high androgen in PCOS rats, and improving the morphology of their polycystic ovaries.

16.
Caries Res ; 55(4): 310-321, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34247164

RESUMO

Extrinsic black tooth stain (BS) is a common oral disease associated with lower caries experience in preschool children, although the microbiotic features contributing to the low risk of caries in this group remain elusive. In this study, we aimed at identifying the dominant bacteria in dental plaque to indicate the incidence of caries in the primary dentition. Subjects were divided into 3 groups based on the clinical examination: group CF, children without pigment who had no caries lesions or restorations (n = 18); group CS, children who were diagnosed with severe early childhood caries (n = 17); and group BS, children with pigment (black extrinsic stain) without caries or restorations (n = 15). The total microbial genomic DNA was extracted and subjected to bacterial 16S ribosomal RNA gene sequencing using an Illumina HiSeq platform. The differential dominant bacteria were determined using Wilcoxon rank-sum testing and linear discriminant analysis effect size (LEfSe). Co-occurrence network analysis was performed using sparse correlations for compositional data, calculation and functional features were predicted using PICRUSt. Interestingly, our results showed that the relative abundance of Pseudopropionibacterium, Actinomyces, Rothia, and Cardiobacterium was from high to low and that of Porphyromonas was low to high in the BS, CF, and CS groups, consistent with the clinical incidence of caries in the 3 groups. Moreover, an increased level of Selenomonas_3, Fusobacterium, and Leptotrichia was associated with high caries prevalence. We found that the interactions among genera in the BS and CS plaque communities are less complex than those in the CF communities at the taxon level. Functional features, including cofactor and vitamin metabolism, glycan biosynthesis and metabolism, and translation, significantly increased in caries plaque samples. These bacterial competition- and commensalism-induced changes in microbiota would result in a change of their symbiotic function, finally affecting the balance of oral microflora.


Assuntos
Cárie Dentária , Placa Dentária , Microbiota , Pré-Escolar , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Humanos , RNA Ribossômico 16S/genética , Dente Decíduo
17.
Front Immunol ; 12: 679184, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276666

RESUMO

Macrophages play an important role in the host defense mechanism. In response to infection, macrophages activate a genetic program of pro-inflammatory response to kill any invading pathogen, and initiate an adaptive immune response. We have identified RUVBL2 - an ATP-binding protein belonging to the AAA+ (ATPase associated with diverse cellular activities) superfamily of ATPases - as a novel regulator in pro-inflammatory response of macrophages. Gene knockdown of Ruvbl2, or pharmacological inhibition of RUVBL1/2 activity, compromises type-2 nitric oxide synthase (Nos2) gene expression, nitric oxide production and anti-bacterial activity of mouse macrophages in response to lipopolysaccharides (LPS). RUVBL1/2 inhibitor similarly inhibits pro-inflammatory response in human monocytes, suggesting functional conservation of RUVBL1/2 in humans. Transcriptome analysis further revealed that major LPS-induced pro-inflammatory pathways in macrophages are regulated in a RUVBL1/2-dependent manner. Furthermore, RUVBL1/2 inhibition significantly reduced the level of histone H3K4me3 at the promoter region of Nos2 and Il6, two prototypical pro-inflammatory genes, and diminished the recruitment of NF-kappaB to the corresponding enhancers. Our study reveals RUVBL1/2 as an integral component of macrophage pro-inflammatory responses through epigenetic regulations, and the therapeutic potentials of RUVBL1/2 inhibitors in the treatment of diseases caused by aberrant activation of pro-inflammatory pathways.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Histonas/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Complexos Multiproteicos/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Animais , Proteínas de Transporte/genética , Citocinas/metabolismo , DNA Helicases/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Metilação , Camundongos , Óxido Nítrico/metabolismo , Processamento de Proteína Pós-Traducional , Células RAW 264.7
18.
Polymers (Basel) ; 13(14)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34300986

RESUMO

Several ternary composites that are based on branched polyethyleneimine (bPEI 25 kDa, polydispersity 2.5, 0.1 or 0.2 ng), citrate-coated ultrasmall superparamagnetic iron oxide nanoparticles (citrate-NPs, 8-10 nm, 0.1, 1.0, or 2.5 µg), and reporter circular plasmid DNA pEGFP-C1 or pRL-CMV (pDNA 0.5 µg) were studied for optimization of the best composite for transfection into glioblastoma U87MG or U138MG cells. The efficiency in terms of citrate-NP and plasmid DNA gene delivery with the ternary composites could be altered by tuning the bPEI/citrate-NP ratios in the polymer composites, which were characterized by Prussian blue staining, in vitro magnetic resonance imaging as well as green fluorescence protein and luciferase expression. Among the composites prepared, 0.2 ng bPEI/0.5 µg pDNA/1.0 µg citrate-NP ternary composite possessed the best cellular uptake efficiency. Composite comprising 0.1 ng bPEI/0.5 µg pDNA/0.1 µg citrate-NP gave the optimal efficiency for the cellular uptake of the two plasmid DNAs to the nucleus. The best working bPEI concentration range should not exceed 0.2 ng/well to achieve a relatively low cytotoxicity.

19.
Food Technol Biotechnol ; 59(1): 31-43, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34084078

RESUMO

Research background: Sorghum bran, although considered as an agricultural waste, is an abundant source of various bioactive compounds. These bioactive compounds require specific extraction with particular solvents and therefore ionic liquid and three different conventional solvents, viz. anhydrous methanol, acidified methanol and water were used in this work. Experimental approach: To evaluate the phytochemicals in the different sorghum bran extracts, total phenol content, flavonoids, condensed tannins and anthocyanins were determined as per standard protocols. Liquid chromatography with tandem mass spectrometryanalysis of extracts was also performed for their phenolic profiling. The antioxidant activity of the extracts was estimated via three assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay, 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation decolourization assay and Cu2+ reducing antioxidant capacity (CUPRAC) method. The antibacterial activity against two most opportunistic foodborne pathogens: Escherichia coli and Staphylococcus aureus was measured by agar well diffusion assay and minimum inhibitory concentration (MIC) was determined by serial dilution method. Results and conclusions: Ionic liquid extract of sorghum bran gave the highest yield ((14.9±0.7) %), which indicated that various possible interactions like Van der Waals forces, H-bonding, hydrophobic and cation-π bonding can occur when ionic liquid is used as an extractant compared to other conventional solvents, although total phenol mass fraction expressed as gallic acid equivalents on dry mass basis was only (7.4±0.7) mg/g. The hydrophobicity of the ionic liquid also helped in efficient extraction of condensed tannins ((63.2±2.1) mg/g expressed on dry mass basis), which resulted in significant antioxidant activity of the ionic liquid extract ((85.2±1.2) µmol/g in DPPH assay, (100.8±0.9) µmol/g in ABTS assay and (63.2±1.9) µmol/g in CUPRAC). An interesting revelation reported in this work is the inability of DPPH assay to evaluate the antioxidant activity in acidic environment. The anhydrous methanolic extract of sorghum bran displayed pH sensitivity, making the extract beneficial for certain applications. Qualitative analysis of extracts revealed greater number of phenolic compounds to be present in methanol and distilled water extracts. Moreover, various derivatives of apigenin and luteolin were also observed in all four extracts. In addition, the acidified methanol extract of the sorghum bran exhibited antimicrobial property at a concentration of 12 mg/mL. A larger inhibition zone was observed against Escherichia coli than Staphylococcus aureus, while the MIC against these two bacteria was 2.2 and 1.1 mg/mL, respectively. Novelty and scientific contribution: This paper presents the first information on the application of ionic liquids as extracting phase for sorghum bran polyphenols and the quantification of such extracts. As evident from the study, each solvent has its own role in the extraction of bioactive compounds. This work also proves that sorghum bran imparts antibacterial activity against foodborne pathogens.

20.
Sci Robot ; 6(52)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-34043547

RESUMO

High-precision delivery of microrobots at the whole-body scale is of considerable importance for efforts toward targeted therapeutic intervention. However, vision-based control of microrobots, to deep and narrow spaces inside the body, remains a challenge. Here, we report a soft and resilient magnetic cell microrobot with high biocompatibility that can interface with the human body and adapt to the complex surroundings while navigating inside the body. We achieve time-efficient delivery of soft microrobots using an integrated platform called endoscopy-assisted magnetic actuation with dual imaging system (EMADIS). EMADIS enables rapid deployment across multiple organ/tissue barriers at the whole-body scale and high-precision delivery of soft and biohybrid microrobots in real time to tiny regions with depth up to meter scale through natural orifice, which are commonly inaccessible and even invisible by conventional endoscope and medical robots. The precise delivery of magnetic stem cell spheroid microrobots (MSCSMs) by the EMADIS transesophageal into the bile duct with a total distance of about 100 centimeters can be completed within 8 minutes. The integration strategy offers a full clinical imaging technique-based therapeutic/intervention system, which broadens the accessibility of hitherto hard-to-access regions, by means of soft microrobots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...