Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 315
Filtrar
1.
Sci Total Environ ; 803: 150079, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34525721

RESUMO

Characterizing the relationship between vegetation phenology and urbanization indicators is essential to understand the impacts of human activities on urban ecosystems. In this study, we explored the response of vegetation phenology to urbanization in Beijing (China) during 2001-2018, using impervious surface area (ISA) and the information of urban-rural gradients (i.e., concentric rings from the urban core to surrounding rural areas) as the urbanization indicators. We found the change rates of vegetation phenology in urban areas are 1.3 and 1.1 days per year for start of season (SOS) and end of season (EOS), respectively, about three times faster than that in forest. Moreover, we found a divergent response of SOS with the increase of ISA, which differs from previous results with advanced SOS in the urban environment than surrounding rural areas. This might be attributed to the mixed land cover types and the thermal environment caused by the urban heat island in the urban environment. Similarly, a divergent pattern of phenological indicators along the urban-rural gradient shows a non-linear response of vegetation phenology to urbanization. These findings provide new insights into the complicated interactions between vegetation phenology and urban environments. High-resolution weather data are required to support process-based vegetation phenology models in the future, particularly under different global urbanization and climate change scenarios.


Assuntos
Ecossistema , Urbanização , Pequim , China , Cidades , Temperatura Alta , Humanos , Desenvolvimento Vegetal
2.
J Colloid Interface Sci ; 607(Pt 2): 1603-1612, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34592547

RESUMO

Crystalline carbon nitride is regarded as the new generation of emerging metal-free photocatalysts as opposed to polymeric carbon nitride (g-C3N4) because of its high crystalline structure and ultrahigh photocatalytic water splitting performance. However, further advances in crystalline g-C3N4 are significantly restricted by the sluggish separation of charge carriers and limited active sites. In this study, we demonstrate the successful synthesis of heptazine-triazine donor-acceptor-based ultrathin crystalline g-C3N4 nanosheets (UCCN) using a combined hot air exfoliation and molten salt (NaCl/KCl) copolymerization approach. The synergy of the donor-acceptor heterojunction and the ultrathin structure greatly accelerated the separation of the charge carriers and enriched the active sites. Accordingly, the superior hydrogen evolution activity and an ultrahigh apparent quantum efficiency of 73.6% at 420 nm under a natural photosynthetic environment were achieved by UCCN, positioning this material at the top among reported conjugated g-C3N4 materials. This study provides a novel paradigm for the development of donor-acceptor-based ultrathin crystalline layered materials.


Assuntos
Hidrogênio , Nitrilas , Água
3.
Biosens Bioelectron ; 196: 113707, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34695686

RESUMO

Exosomal microRNAs (miRNAs) play a key role in cell-cell communication to regulate gene expression in target cells and have great potential as biomarkers for disease diagnosis. This paper reports an on-chip exosomal miRNA amplification and detection system for rapid analysis of exosomal miRNAs. The compact system consists of two connected flow cells for processing exosomes and detecting miRNAs, respectively. The miRNAs extracted from exosomes were quantitatively measured using the on-chip exponential amplification reaction (EXPAR) assay. The sensor chip was designed to store multiple oligonucleotide templates for the EXPAR, mix sample and reagent, and simultaneously analyze multiple exosomal miRNAs of interest. To facilitate the miRNA analysis, a portable detection instrument was built on an IoT platform using a low-cost microcontroller to execute the EXPAR assay, collect fluorescent images, and analyze amplification curves. Here, we studied the miRNA profiles carried by exosomes derived from three different phenotypes of tissue macrophages. The affordable instrument, rapid assay, multiplexed analysis, as well as disposable sensor chip, would boost the development of point-of-care liquid biopsy tests using exosomal miRNAs.

4.
Cell Oncol (Dordr) ; 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34855159

RESUMO

BACKGROUND: Sparc/osteonectin, cwcv and kazal-like domain proteoglycan 1 (SPOCK1) has been reported to function as an oncogene in a variety of cancer types. Increasing evidence suggests that SPOCK1 contributes to the metastatic cascade, including invasion, epithelial-mesenchymal transition (EMT) and micro-metastasis formation. As yet, however, the underlying mechanism is not clearly understood. Here, we evaluated the expression and clinicopathological significance of SPOCK1 in primary pancreatic cancer (PC) specimens and explored the mechanisms underlying SPOCK1-mediated PC cell growth and metastasis. METHODS: The clinical relevance of SPOCK1 was evaluated in 81 patients with PC. The effect of SPOCK1 on proliferation, cell cycle progression, EMT and metastasis was examined in vitro and in vivo. The molecular mechanisms involved in SPOCK1-mediated regulation of NF-κB-dependent EMT were assessed in PC cell lines. RESULTS: We found that SPOCK1 expression was increased in PC tissues and was associated with lymph node metastasis. Silencing or exogenous overexpression of SPOCK1 markedly altered the proliferation of PC cells through cell cycle transition. Overexpression of SPOCK1 promoted PC cell migration and invasion by regulating EMT progression. Moreover, we found that SPOCK1 contributes to EMT and metastasis by activating the NF-κB signalling pathway via direct interaction with IκBα. After NF-κB pathway inhibition by BAY11-7082, we found that PC cell motility and EMT induced by SPOCK1 were reversed. CONCLUSION: From our data we conclude that SPOCK1 promotes PC metastasis via NF-κB-dependent EMT by interacting with IκBα. This newly identified mechanism may provide novel clues for the (targeted) treatment of PC patients.

5.
Food Chem ; : 131568, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34815112

RESUMO

Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit contains a large number of naturally occurring molecules present as glycoside, methylated, and methyl ester conjugates, which should be hydolysed or transformed to become bioactive forms. For this purpose, Bifidobacterium animalis subsp. lactis HN-3 was selected to ferment Elaeagnus angustifolia var. orientalis (L.)Kuntze fruit juice (EOJ). After fermentation, the total phenolic content (TPC) and antioxidant capacity of the EOJ increased significantly compared to the non-fermented EOJ. Using widely-targeted metabolomics analysis, polyphenolic compounds involved in the flavonoid biosynthetic pathway were determined to be up-regulated in the fermented EOJ. In addition, the metabolites generated by 8 deglycosidation, 5 demethylation, 5 hydrogenation, and 28 other reactions were detected in higher concentrations in the fermented EOJ compared to the non-fermented EOJ. Interestingly, these up-regulated metabolites have higher antioxidant and other biological activities than their metabolic precursors, which provide a theoretical basis for the development of Bifidobacterium-fermented plant products with stronger functional activities.

6.
Integr Zool ; 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783153

RESUMO

A new species of Dugesia (Platyhelminthes, Tricladida, Dugesiidae) from northern China is described on the basis of an integrative approach, involving morphology, karyology, histology, molecular distance, molecular phylogeny, and mitochondrial gene order. Here were present the complete mitogenome of the new species Dugesia constrictiva Chen & Dong, sp. nov. This new species is mainly characterized by the presence of the following features: asymmetrical openings of the oviducts; large, cuboidal copulatory bursa; vasa deferentia opening through the ventro-lateral wall of the seminal vesicle; laterally compressed seminal vesicle; ventrally displaced ejaculatory duct, opening at the blunt tip of the penis papilla; long duct intercalated between seminal vesicle and diaphragm; chromosome complement diploid, with 16 metacentric chromosomes; mitochondrial gene order as follows: cox1-E-nad6-nad5-S2-D-R-cox3-I-Q-K-atp6-V-nad1-W-cox2-P-nad3-A-nad2-M-H-F-rrnS-L1-Y-G-S1-rrnL-L2-T-atp8-C-N-cob-nad4l-nad4. In triclads, mitochondrial gene order is considerably conserved between freshwater planarians and land flatworms, whereas it is variable between marine planarians and both freshwater and land flatworms. The secondary structures of tRNAs are all equipped with four arms, excepting tRNA S1 and tRNA S2, which lack the D arm and have excessively enlarged loops. Numerous transpositions of tRNA are present between Dugesia constrictiva and its congeners. Mitochondrial gene arrangements may form a new, additional tool for taxonomic studies. The phylogenetic tree based on analysis of the mitochondrial genome basically corroborates current classification of the higher taxa of planarian flatworms. This article is protected by copyright. All rights reserved.

7.
Front Microbiol ; 12: 731419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737727

RESUMO

Spatial organization of chemotactic proteins is important for cooperative response to external stimuli. However, factors affecting the localization dynamics of chemotaxis proteins are less studied. According to some reports, the polar localization of chemotaxis system I is induced by hypoxia and starvation in Vibrio cholerae. However, in V. cholerae, the chemotaxis system I is not involved in flagellum-mediated chemotaxis, and it may play other alternative cellular functions. In this study, we found that the polar localization of CheZ, a phosphatase regulating chemotactic movement in Azorhizobium caulinodans ORS571, can also be affected by hypoxia and cellular energy-status. The conserved phosphatase active site D165 and the C-terminus of CheZ are essential for the energy-related localization, indicating a cross link between hypoxia-related localization changes and phosphatase activity of CheZ. Furthermore, three of five Aer-like chemoreceptors containing PAS domains participate in the cellular localization of CheZ. In contrast to carbon starvation, free-living nitrogen fixation can alleviate the role of nitrogen limitation and hypoxia on polar localization of CheZ. These results showed that the localization changes induced by hypoxia might be a strategy for bacteria to adapt to complex environment.

8.
Front Mol Neurosci ; 14: 720899, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776862

RESUMO

Background: Lower-grade glioma (LGG) is the most common histology identified in gliomas, a heterogeneous tumor that may develop into high-grade malignant glioma that seriously shortens patient survival time. Recent studies reported that glutamatergic synapses might play an essential role in the progress of gliomas. However, the role of glutamatergic synapse-related biomarkers in LGG has not been systemically researched yet. Methods: The mRNA expression data of glioma and normal brain tissue were obtained from The Cancer Genome Atlas database and Genotype-Tissue Expression, respectively, and the Chinese Glioma Genome Atlas database was used as a validation set. Difference analysis was performed to evaluate the expression pattern of glutamatergic synapse-related genes (GSRGs) in LGG. The least absolute shrinkage and selection operator (LASSO) Cox regression was applied to construct the glutamatergic synapse-related risk signature (GSRS), and the risk score of each LGG sample was calculated based on the coefficients and expression value of selected GSRGs. Univariate and multivariate Cox regression analyses were used to investigate the prognostic value of risk score. Immunity profile and single-sample gene set enrichment analysis (ssGSEA) were performed to explore the association between risk score and the characters of tumor microenvironment in LGG. Gene set variation analysis (GSVA) was performed to investigate the potential pathways related to GSRS. The HPA database and real-time PCR were used to identify the expression of hub genes identified in GSRS. Results: A total of 22 genes of 39 GSRGs were found differentially expressed among normal and LGG samples. Through the LASSO algorithm, 14-genes GSRS constructed were associated with the prognosis and clinicopathological features of patients with LGG. Furthermore, the risk score level was significantly positively correlated with the infiltrating level of immunosuppressive cells, including M2 macrophages and regulatory T cells. GSVA identified a series of cancer-related pathways related to GSRS, such as P13K-AKT and P53 pathways. Moreover, ATAD1, NLGN2, OXTR, and TNR, hub genes identified in GSRS, were considered as potential prognostic biomarkers in LGG. Conclusion: A 14-genes GSRS was constructed and verified in this study. We provided a novel insight into the role of GSRS in LGG through a series of bioinformatics methods.

9.
Front Psychol ; 12: 732104, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603153

RESUMO

The senior market signifies an enormous, rapidly expanding segment, and this research aimed to investigate this segment by proposing a theoretical model incorporating the antecedents of consumer flow experience, flow theory, and technology acceptance model (TAM) devised for determining social media purchase intention. This study focuses on the senior citizens engaged in shopping using social media located in Pakistan. A total of 300 senior citizens were selected. An online survey was conducted with the help of a marketing research agency located in Pakistan. The data were analyzed using the partial least squares (PLS) method. According to the results, the antecedents, such as feedback, enjoyment, and time distortion were found to be in a positive relationship with flow experience, however, the concentration did not have a significant effect on the flow. Furthermore, the flow was found to be in a significant relationship with social media purchase intention and TAM. Finally, TAM was also found to be in a positive significant relationship with social media purchase intention. This research contributes to the constantly expanding volume of the utilization of social media by the senior market segment population for buying and producing the highly valuable knowledge for manufacturers, wholesalers, vendors, and a huge number of senior customers.

10.
Appl Opt ; 60(25): 7740-7744, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34613245

RESUMO

By continuously injecting four groups of heterogeneous frequency dual pulses into the sensing fiber with weak fiber Bragg gratings (WFBGs), a quasi-distributed acoustic sensing method based on frequency-division multiplexing is proposed. Each group of pulses generates interference signals with different carrier frequencies after being reflected by the WFBGs. Through the discrete Fourier transform phase demodulation method, each carrier frequency interference signal is demodulated and then the phase is spliced. The feasibility of this method is theoretically analyzed, and a detection with a bandwidth of 2 kHz is realized on a 70 km sensing fiber with a spatial resolution of 10 m.

11.
J Hazard Mater ; 424(Pt B): 127485, 2021 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-34655878

RESUMO

Microporous organic networks (MONs) have shown great potential in the removal of environmental contaminants. However, all studies have focused on the design and construction of novel and efficient adsorbents, and the recycling and reuse of adsorbates were disregarded. In this study, we report a feasible approach to synthesize renewable and reusable MONs by using target halogenated contaminants such as tetrabromobisphenol A (TBBPA), 2,3-dichlorophenol (2,3-DCP), and 2,4,6-trichlorophenol (2,4,6-TCP) as starting monomers. TBBPA, 2,3-DCP, and 2,4,6-TCP acted as hazardous contaminants and starting monomers for MONs, leading to the recycling of both adsorbents and adsorbates. The obtained TBBPA-MON, 2,3-DCP-MON, and 2,4,6-TCP-MON not only offered good reusability and large adsorption capacity for their elimination but also provided good adsorption for other phenolic contaminants relying on multiple interactions. Density functional theory calculation indicated the dominant role of π-π and hydrophobic interactions and the secondary role of hydrogen bonding interactions during the adsorption process. The used TBBPA-MON could be reused and the eluted TBBPA could be recycled and renewed for the construction of fresh MONs. This study provided a feasible approach to design and synthesize renewable MONs for environmental contaminants.

12.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34638868

RESUMO

Mechanical unloading contributes to significant cardiovascular deconditioning. Endothelial dysfunction in the sites of microcirculation may be one of the causes of the cardiovascular degeneration induced by unloading, but the detailed mechanism is still unclear. Here, we first demonstrated that mechanical unloading inhibited brain microvascular endothelial cell proliferation and downregulated histone deacetylase 6 (HDAC6) expression. Furthermore, HDAC6 promoted microvascular endothelial cell proliferation and attenuated the inhibition of proliferation caused by clinorotation unloading. To comprehensively identify microRNAs (miRNAs) that are regulated by HDAC6, we analyzed differential miRNA expression in microvascular endothelial cells after transfection with HDAC6 siRNA and selected miR-155-5p, which was the miRNA with the most significantly increased expression. The ectopic expression of miR-155-5p inhibited microvascular endothelial cell proliferation and directly downregulated Ras homolog enriched in brain (RHEB) expression. Moreover, RHEB expression was downregulated under mechanical unloading and was essential for the miR-155-5p-mediated promotion of microvascular endothelial cell proliferation. Taken together, these results are the first to elucidate the role of HDAC6 in unloading-induced cell growth inhibition through the miR-155-5p/RHEB axis, suggesting that the HDAC6/miR-155-5p/RHEB pathway is a specific target for the preventative treatment of cardiovascular deconditioning.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Desacetilase 6 de Histona/metabolismo , MicroRNAs/biossíntese , Microvasos/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Camundongos , Microvasos/citologia
13.
Environ Sci Technol ; 55(20): 13583-13592, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34597038

RESUMO

Landfills receive over half of all U.S. municipal solid waste (MSW) and are the third largest source of anthropogenic methane emissions. Life-cycle assessment (LCA) of landfills is complicated by the long duration of waste disposal, gas generation and control, and the time over which the engineered infrastructure must perform. The objective of this study is to develop an LCA model for a representative U.S. MSW landfill that is responsive to landfill size, regulatory thresholds for landfill gas (LFG) collection and control, practices for LFG management (i.e., passive venting, flare, combustion for energy recovery), and four alternative schedules for LFG collection well installation. Material production required for construction and operation contributes 68-75% to toxicity impacts, while LFG emissions contribute 50-99% to global warming, ozone depletion, and smog impacts. The current non-methane organic compound regulatory threshold (34 Mg yr-1) reduces methane emissions by <7% relative to the former threshold (50 Mg yr-1). Requiring landfills to continue collecting LFG until the flow rate is <10 m3 min-1 reduces emissions by 20-52%, depending on the waste decay rate. In general, for landfills already required to collect gas, collecting gas longer is more important than collecting gas earlier to reduce methane emissions.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Metano , Instalações de Eliminação de Resíduos
14.
Am J Transplant ; 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34599765

RESUMO

T cells must be activated and become effectors first before executing allograft rejection, a process that is regulated by diverse signals and transcription factors. In this study, we studied the basic leucine zipper ATF-like transcription factor (BATF) family members in regulating T cell activities in a heart transplant model and found that mice deficient for both BATF and BATF3 (Batf-/- Batf3-/- mice) spontaneously accept the heart allografts long-term without tolerizing therapies. Similarly, adoptive transfer of wild type T cells into Rag1-/- hosts induced prompt rejection of heart and skin allografts, whereas the Batf-/- Batf3-/- T cells failed to do so. Analyses of graft-infiltrating cells showed that Batf-/- Batf3-/- T cells infiltrate the graft but fail to acquire an effector phenotype (CD44high KLRG1+ ). Co-transfer experiments in a T cell receptor transgenic TEa model revealed that the Batf-/- Batf3-/- T cells fail to expand in vivo, retain a quiescent phenotype (CD62L+ CD127+ ), and unable to produce effector cytokines to alloantigen stimulation, which contrasted sharply to that of wild type T cells. Together, our data demonstrate that the BATF and BATF3 are critical regulators of T effector functions, thus making them attractive targets for therapeutic interventions in transplant settings.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34507817

RESUMO

OBJECTIVE: Calcified aortic valvular disease is known as an inflammation-related process related to force. The purpose of this study was to determine whether micromechanical force could induce valve calcification of porcine valvular interstitial cells and to examine the role of integrin αvß3 in valvular calcification by using a novel method: magnetic twisting cytometry. METHODS: Porcine valvular interstitial cells were cultured in vitro, and micromechanical force was applied to porcine valvular interstitial cells using magnetic twisting cytometry. Changes in calcification-related factors osteopontin and RUNX2 were detected. By using the calcification medium, the optimal magnetic twisting cytometry parameters for inducing valvular interstitial cell calcification were determined, and a magnetic twisting cytometry calcification promotion model was established. The role of αvß3 in calcification was studied by using αvß3 antagonists to block the function of αvß3. RESULTS: Reverse transcription polymerase chain reaction assays showed that the expression of osteopontin was enhanced 30 minutes after 25G-1Hz 5 minutes of stimulation. Western blotting assays showed that the expression of osteopontin and RUNX2 was upregulated 24 hours after 25G-1Hz 5 minutes of stimulation. The optimal magnetic twisting cytometry parameter for inducing porcine valvular interstitial cell calcification was 25G-2Hz for 10 minutes. The expression of osteopontin and RUNX2 decreased significantly after the addition of αvß3 antagonist. Clinically, patients with bicuspid aortic valves had high expression of RUNX2 and ß3 in the aortic valve, and ß3 significantly correlated with RUNX2. CONCLUSIONS: By using magnetic twisting cytometry, we established a porcine valvular interstitial cell calcification model by micromechanical force stimulation and obtained the optimal parameters. Integrin αvß3 plays a key role in the aortic valve calcification process.

16.
Med Oncol ; 38(11): 132, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34581882

RESUMO

WAC is closely related to the occurrence and development of tumors. However, its role in human glioblastoma (GBM) and its potential regulatory mechanisms have not been investigated. This study demonstrated that WAC is downregulated in GBM, and its low expression predicts a poor prognosis. We investigated the effect of WAC on the proliferation of glioma cells through a CCK-8 assay, EdU incorporation, and cell formation. The effects of WAC on apoptosis and autophagy in glioma were determined by flow cytometry, TUNEL detection, immunofluorescence, q-PCR, WB, and scanning electron microscopy. We found that overexpression of WAC inhibited the proliferation of glioma cells, promoted apoptosis, and induced autophagy. Therefore, WAC is likely to play a role as a new regulatory molecule in glioma.

17.
Phys Rev E ; 104(2-2): 025307, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525560

RESUMO

Principal component analysis (PCA) has been applied to analyze random fields in various scientific disciplines. However, the explainability of PCA remains elusive unless strong domain-specific knowledge is available. This paper provides a theoretical framework that builds a duality between the PCA eigenmodes of a random field and eigenstates of a Schrödinger equation. Based on the duality we propose the Schrödinger PCA algorithm to replace the expensive PCA solver with a more sample-efficient Schrödinger equation solver. We verify the validity of the theory and the effectiveness of the algorithm with numerical experiments.

18.
Front Neurol ; 12: 683051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512505

RESUMO

Background: Aneurysmal subarachnoid hemorrhage (aSAH) leads to severe disability and functional dependence. However, no reliable method exists to predict the clinical prognosis after aSAH. Thus, this study aimed to develop a web-based dynamic nomogram to precisely evaluate the risk of poor outcomes in patients with aSAH. Methods: Clinical patient data were retrospectively analyzed at two medical centers. One center with 126 patients was used to develop the model. Least absolute shrinkage and selection operator (LASSO) analysis was used to select the optimal variables. Multivariable logistic regression was applied to identify independent prognostic factors and construct a nomogram based on the selected variables. The C-index and Hosmer-Lemeshow p-value and Brier score was used to reflect the discrimination and calibration capacities of the model. Receiver operating characteristic curve and calibration curve (1,000 bootstrap resamples) were generated for internal validation, while another center with 84 patients was used to validate the model externally. Decision curve analysis (DCA) and clinical impact curves (CICs) were used to evaluate the clinical usefulness of the nomogram. Results: Unfavorable prognosis was observed in 46 (37%) patients in the training cohort and 24 (29%) patients in the external validation cohort. The independent prognostic factors of the nomogram, including neutrophil-to-lymphocyte ratio (NLR) (p = 0.005), World Federation of Neurosurgical Societies (WFNS) grade (p = 0.002), and delayed cerebral ischemia (DCI) (p = 0.0003), were identified using LASSO and multivariable logistic regression. A dynamic nomogram (https://hu-ping.shinyapps.io/DynNomapp/) was developed. The nomogram model demonstrated excellent discrimination, with a bias-corrected C-index of 0.85, and calibration capacities (Hosmer-Lemeshow p-value, 0.412; Brier score, 0.12) in the training cohort. Application of the model to the external validation cohort yielded a C-index of 0.84 and a Brier score of 0.13. Both DCA and CIC showed a superior overall net benefit over the entire range of threshold probabilities. Conclusion: This study identified that NLR on admission, WFNS grade, and DCI independently predicted unfavorable prognosis in patients with aSAH. These factors were used to develop a web-based dynamic nomogram application to calculate the precise probability of a poor patient outcome. This tool will benefit personalized treatment and patient management and help neurosurgeons make better clinical decisions.

19.
Nat Prod Res ; : 1-5, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34514922

RESUMO

Phyllanthus emblica L. is a widely distributed tropical medicinal plant with good therapeutic properties. In the present study, the chemical constituents isolation of the roots of P. emblica were carried out and six known compounds (1-6) were purified and their structures were determined by means of spectroscopic analysis. The known triterpenoid, secofriedelanophyllemblicine (1), was selected to check for its cytotoxic effect on a series of human tumor cells and normal cells. Secofriedelanophyllemblicine exhibited cell growth inhibition specifically on MCF-7 breast cancer cells when compared to other tested cell lines. Further flow cytometric analysis showed that secofriedelanophyllemblicine could inhibit cell proliferation and induced G2 phase arrest in the cell-cycle progression of MCF-7 cells. The gathered results suggest that secofriedelanophyllemblicine is a cell-cycle regulator in MCF-7 human breast cancer cells and might be used as a candidate chemopreventive agent for breast cancer prevention and intervention.

20.
Vaccines (Basel) ; 9(9)2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34579276

RESUMO

Bovine viral diarrhea virus (BVDV) is a pathogen associated with substantial economic losses in the dairy cattle industry. Currently, there are no effective vaccines against BVDV. Melatonin (MT) has been shown to have anti-inflammatory and anti-viral properties, and the use of MF59 in vaccines significantly enhances vaccine efficiency. Here, MT and MF59 were added into the Erns-LTB vaccine. Subsequently, their inhibitory activity on the NF-κB signaling pathway in Mardin-Darby Bovine Kidney cells and the hippocampus was assessed using western blot and quantitative reverse transcription PCR. The findings revealed that MT in the Erns-LTB vaccine decreases the phosphorylation of p65 proteins caused by BVDV infection. In addition, MT decreased the mRNA levels of IL-1ß and IL-6 in vitro, but increased the production of IFN-α, IFN-ß, Mx1 in vitro, brain-derived neurotrophic factor, cyclic amp response element-binding protein, and the stem cell factor in vivo. Furthermore, treatment with Erns-LTB + MF59 + MT stimulated the production of T lymphocytes, alleviated pathological damage, decreased expressions of BVDV antigen, and tight junction proteins in mice. These findings imply that MT has potential for use in the Erns-LTB vaccine to inhibit BVDV infection and regulate the immune responses of T-cells by inhibiting the NF-κB signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...