Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 18(5)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34663771

RESUMO

Objective. Brain-machine interfaces (BMIs) provide a direct pathway between the brain and external devices such as computer cursors and prosthetics, which have great potential in motor function restoration. One critical limitation of current BMI systems is the unstable performance, partly due to the variability of neural signals. Studies showed that neural activities exhibit trial-to-trial variability, and the preferred direction of neurons frequently changes under different conditions. Therefore, a fixed decoding function does not work well.Approach. To deal with the problems, we propose a novel kernel regression framework. The nonparametric kernel regression is used to fit diverse decoding functions by finding similar neural patterns to handle neural variations caused by varying tuning functions. Further, the representations of raw neural signals are learned by Siamese networks and constrained by kinematic parameters, which can alleviate neural variations caused by intrinsic noises and task-irrelevant information. The representations are jointly learned with the kernel regression framework in an end-to-end manner so that neural variations can be tackled effectively.Main results. Experiments on two datasets demonstrate that our approach outperforms most existing methods and significantly improves the robustness in challenging situations such as limited samples and missing channels.Significance. The proposed approach demonstrates robust performance with different conditions and provides a new and inspiring perspective toward robust BMI control.

2.
Microbiol Spectr ; : e0135221, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643438

RESUMO

The emerging new lineages of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) have marked a new phase of coronavirus disease 2019 (COVID-19). Understanding the recognition mechanisms of potent neutralizing monoclonal antibodies (NAbs) against the spike protein is pivotal for developing new vaccines and antibody drugs. Here, we isolated several monoclonal antibodies (MAbs) against the SARS-CoV-2 spike protein receptor-binding domain (S-RBD) from the B cell receptor repertoires of a SARS-CoV-2 convalescent. Among these MAbs, the antibody nCoV617 demonstrates the most potent neutralizing activity against authentic SARS-CoV-2 infection, as well as prophylactic and therapeutic efficacies against the human angiotensin-converting enzyme 2 (ACE2) transgenic mouse model in vivo. The crystal structure of S-RBD in complex with nCoV617 reveals that nCoV617 mainly binds to the back of the "ridge" of RBD and shares limited binding residues with ACE2. Under the background of the S-trimer model, it potentially binds to both "up" and "down" conformations of S-RBD. In vitro mutagenesis assays show that mutant residues found in the emerging new lineage B.1.1.7 of SARS-CoV-2 do not affect nCoV617 binding to the S-RBD. These results provide a new human-sourced neutralizing antibody against the S-RBD and assist vaccine development. IMPORTANCE COVID-19 is a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The COVID-19 pandemic has posed a serious threat to global health and the economy, so it is necessary to find safe and effective antibody drugs and treatments. The receptor-binding domain (RBD) in the SARS-CoV-2 spike protein is responsible for binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It contains a variety of dominant neutralizing epitopes and is an important antigen for the development of new coronavirus antibodies. The significance of our research lies in the determination of new epitopes, the discovery of antibodies against RBD, and the evaluation of the antibodies' neutralizing effect. The identified antibodies here may be drug candidates for the development of clinical interventions for SARS-CoV-2.

3.
World J Clin Cases ; 9(25): 7330-7339, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34616799

RESUMO

BACKGROUND: Tracheobronchial tuberculosis (TBTB) is a common subtype of pulmonary tuberculosis. Concomitant diseases often obscure the diagnosis of senile TBTB. AIM: To characterize senile patients with TBTB and to identify the potential causes of misdiagnosis. METHODS: One hundred twenty patients with senile TBTB who were admitted to the Anhui Chest hospital between May 2017 and May 2019 were retrospectively analyzed. Patients were classified as diagnosed group (n = 58) and misdiagnosed group (n = 62). Clinical manifestations, laboratory results, radiographic data, and endoscopic findings were compared between the two groups. RESULTS: Patients in the misdiagnosed group were most commonly diagnosed as pulmonary tuberculosis (non-TBTB, 29/62, 46.8%), general pneumonia (9/62, 14.5%), chronic obstructive pulmonary disease (8/62, 12.9%), and tracheobronchial carcinoma (7/62, 11.3%). The time elapsed between disease onset and confirmation of diagnosis was significantly longer in the misdiagnosed group [median (first quartile, third quartile): 6.32 (4.94, 16.02) mo vs 3.73 (2.37, 8.52) mo]. The misdiagnosed group had lower proportion of patients who underwent bronchoscopy [33.87% (21/62) vs 87.93% (51/58)], chest computed tomography (CT) scan [69.35% (43/62) vs 98.28% (57/58)], and those who showed CT signs of tuberculosis [27.91% (12/62) vs 50% (29/58)] as compared to that in the diagnosed group (P < 0.05). There were no significant between-group differences with respect to age, gender, occupation, clinical manifestations, or prevalence of comorbid chronic diseases (P > 0.05). CONCLUSION: Insufficient or inaccurate radiographic or bronchoscopic assessment was the predominant cause of delayed diagnosis of TBTB. Increased implementation and better interpretation of CT scan and early implementation of bronchoscopy can help reduce misdiagnosis of senile TBTB.

4.
J Biol Chem ; : 101277, 2021 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-34619148

RESUMO

Nucleic acid-sensing pathways play critical roles in innate immune activation through the production of type I interferon (IFN-I) and proinflammatory cytokines. These factors are required for effective anti-tumor immune responses. Pharmacological modulators of the pre-mRNA spliceosome splicing factor 3b subunit 1 (SF3B1) are under clinical investigation as cancer cytotoxic agents. However, potential roles of these agents in aberrant RNA generation and subsequent RNA-sensing pathway activation have not been studied. In this study, we observed that SF3B1 pharmacological modulation using pladienolide B (Plad B) induces production of aberrant RNA species and robust IFN-I responses via engagement of the dsRNA sensor retinoic acid-inducible gene I (RIG-I) and downstream interferon regulatory factor 3 (IRF3). We found that Plad B synergized with canonical RIG-I agonism to induce the IFN-I response. In addition, Plad B induced NF-κB responses and secretion of proinflammatory cytokines and chemokines. Finally, we showed that cancer cells bearing the hotspot SF3B1K700E mutation, which leads to global aberrant splicing, had enhanced IFN-I response to canonical RIG-I agonism. Together, these results demonstrate that pharmacological modulation of SF3B1 in cancer cells can induce an enhanced IFN-I response dependent on RIG-I expression. The study suggests that spliceosome modulation may not only induce direct cancer cell cytotoxicity but also initiate an innate immune response via activation of RNA sensing pathways.

5.
Neural Comput ; 33(5): 1372-1401, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-34496393

RESUMO

Motor brain machine interfaces (BMIs) interpret neural activities from motor-related cortical areas in the brain into movement commands to control a prosthesis. As the subject adapts to control the neural prosthesis, the medial prefrontal cortex (mPFC), upstream of the primary motor cortex (M1), is heavily involved in reward-guided motor learning. Thus, considering mPFC and M1 functionality within a hierarchical structure could potentially improve the effectiveness of BMI decoding while subjects are learning. The commonly used Kalman decoding method with only one simple state model may not be able to represent the multiple brain states that evolve over time as well as along the neural pathway. In addition, the performance of Kalman decoders degenerates in heavy-tailed nongaussian noise, which is usually generated due to the nonlinear neural system or influences of movement-related noise in online neural recording. In this letter, we propose a hierarchical model to represent the brain states from multiple cortical areas that evolve along the neural pathway. We then introduce correntropy theory into the hierarchical structure to address the heavy-tailed noise existing in neural recordings. We test the proposed algorithm on in vivo recordings collected from the mPFC and M1 of two rats when the subjects were learning to perform a lever-pressing task. Compared with the classic Kalman filter, our results demonstrate better movement decoding performance due to the hierarchical structure that integrates the past failed trial information over multisite recording and the combination with correntropy criterion to deal with noisy heavy-tailed neural recordings.

6.
Front Hum Neurosci ; 15: 701091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483866

RESUMO

One of the most significant challenges in the application of brain-computer interfaces (BCI) is the large performance variation, which often occurs over time or across users. Recent evidence suggests that the physiological states may explain this performance variation in BCI, however, the underlying neurophysiological mechanism is unclear. In this study, we conducted a seven-session motor-imagery (MI) experiment on 20 healthy subjects to investigate the neurophysiological mechanism on the performance variation. The classification accuracy was calculated offline by common spatial pattern (CSP) and support vector machine (SVM) algorithms to measure the MI performance of each subject and session. Relative Power (RP) values from different rhythms and task stages were used to reflect the physiological states and their correlation with the BCI performance was investigated. Results showed that the alpha band RP from the supplementary motor area (SMA) within a few seconds before MI was positively correlated with performance. Besides, the changes of RP between task and pre-task stage from theta, alpha, and gamma band were also found to be correlated with performance both across time and subjects. These findings reveal a neurophysiological manifestation of the performance variations, and would further provide a way to improve the BCI performance.

7.
IEEE Trans Biomed Eng ; PP2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34582344

RESUMO

Brain-computer interfaces (BCI) that enables people with severe motor disabilities to use their brain signals for direct control of objects have attracted increased interest in rehabilitation. To date, no study has investigated feasibility of the BCI framework incorporating both intracortical and scalp signals. Methods: Concurrent local field potential (LFP) from the hand-knob area and scalp EEG were recorded in a paraplegic patient undergoing a spike-based close-loop neurorehabilitation training. Based upon multimodal spatio-spectral feature extraction and Naive Bayes classification, we developed, for the first time, a novel LFP-EEG-BCI for motor intention decoding. A transfer learning (TL) approach was employed to further improve the feasibility. The performance of the proposed LFP-EEG-BCI for four-class upper-limb motor intention decoding was assessed. Results: Using a decision fusion strategy, we showed that the LFP-EEG-BCI significantly (p <0.05) outperformed single modal BCI (LFP-BCI and EEG-BCI) in terms of decoding accuracy with the best performance achieved using regularized common spatial pattern features. Interrogation of feature characteristics revealed discriminative spatial and spectral patterns, which may lead to new insights for better understanding of brain dynamics during different motor imagery tasks and promote development of efficient decoding algorithms. Moreover, we showed that similar classification performance could be obtained with few training trials, therefore highlighting the efficacy of TL. Conclusion: The present findings demonstrated the superiority of the novel LFP-EEG-BCI in motor intention decoding. Significance: This work introduced a novel LFP-EEG-BCI that may lead to new directions for developing practical neurorehabilitation systems with high detection accuracy and multi-paradigm feasibility in clinical applications.

8.
Dalton Trans ; 50(37): 12826-12830, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34499057

RESUMO

This work reports a CsI stripping/insertion process that enables the reversible transformation between blue-emissive Cs3Cu2I5 and yellow-emissive CsCu2I3 upon moisture/evaporation treatment. The successful transformation can be ascribed to the unique space confinement of the SiO2 matrix and ligand-free feature of perovskite nanocrystals, which can be a good candidate for anti-counterfeiting.

9.
Food Sci Nutr ; 9(9): 5060-5069, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34532015

RESUMO

High-altitude hypoxia-induced oxidative stress and inflammation played an essential role in the incidence and development of liver injury. Salidroside (Sal), a phenylpropanoid glycoside extracted from the plant Rhodiola rosea, has recently demonstrated antioxidant, anti-inflammatory, and antihypoxia properties. Herein, we hypothesized that salidroside may alleviate hypoxia-induced liver injury via antioxidant and antiinflammatory-related pathways. A high-altitude hypoxia animal model was established using hypobaric chamber. Male SD rats were randomly divided into the control group, hypoxia group, control +Sal group, and hypoxia +Sal group. Salidroside treatment significantly inhibited hypoxia-induced increases of serum and hepatic pro-inflammatory cytokines release, hepatic ROS production and MDA contents; attenuated hypoxia-induced decrease of hepatic SOD, CAT, and GSH-Px activities. Furthermore, salidroside treatment also potentiated the activation of Nrf2-mediated anti-oxidant pathway, as indicated by upregulation of n-Nrf2 and its downstream HO-1 and NQO-1. In vitro study found that blocking the Nrf2 pathway using specific inhibitor ML385 significantly reversed the protective effect of salidroside on hypoxia-induced liver oxidative stress. In addition, salidroside treatment significantly inhibited hepatic pro-inflammatory cytokines release via JAK2/STAT3-mediated pathway. Taken together, our findings suggested that salidroside protected against hypoxia-induced hepatic oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways.

10.
Neural Comput ; 33(11): 2971-2995, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34474470

RESUMO

Our real-time actions in everyday life reflect a range of spatiotemporal dynamic brain activity patterns, the consequence of neuronal computation with spikes in the brain. Most existing models with spiking neurons aim at solving static pattern recognition tasks such as image classification. Compared with static features, spatiotemporal patterns are more complex due to their dynamics in both space and time domains. Spatiotemporal pattern recognition based on learning algorithms with spiking neurons therefore remains challenging. We propose an end-to-end recurrent spiking neural network model trained with an algorithm based on spike latency and temporal difference backpropagation. Our model is a cascaded network with three layers of spiking neurons where the input and output layers are the encoder and decoder, respectively. In the hidden layer, the recurrently connected neurons with transmission delays carry out high-dimensional computation to incorporate the spatiotemporal dynamics of the inputs. The test results based on the data sets of spiking activities of the retinal neurons show that the proposed framework can recognize dynamic spatiotemporal patterns much better than using spike counts. Moreover, for 3D trajectories of a human action data set, the proposed framework achieves a test accuracy of 83.6% on average. Rapid recognition is achieved through the learning methodology-based on spike latency and the decoding process using the first spike of the output neurons. Taken together, these results highlight a new model to extract information from activity patterns of neural computation in the brain and provide a novel approach for spike-based neuromorphic computing.

11.
Int J Nanomedicine ; 16: 5193-5209, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354353

RESUMO

Background: Recently, nanocatalyst-induced endoplasmic reticulum (ER) stress for cancer therapy has been attracting considerable attention. However, cancer cells are often able to overcome ER stress-induced death by activating the unfolded protein response (UPR), making nanocatalytic monotherapy a poor defense against cancer progression. Purpose: In this study, to improve the nanocatalytic treatment efficacy, a phase change material (PCM) was used to encapsulate the upstream ER stress initiator, iron oxide nanoparticles (Fe3O4 NPs), and the downstream UPR modulator, PR-619. Subsequently, the tumor-homing peptide tLyP-1 was coupled to it to form tLyP-1/PR-619/Fe3O4@PCM (tPF@PCM) theranostic platform. Materials and Methods: tPF@PCM was synthesized using nanoprecipitation and resolidification methods followed by the EDC/NHS cross-linking method. The targeting capacity of tPF@PCM was evaluated in vitro and in vivo using flow cytometry and magnetic resonance imaging, respectively. The therapeutic efficacy of tPF@PCM was investigated in a renal cell carcinoma mouse model. Moreover, we explored the synergistic anti-tumor mechanism by examining the intracellular reactive oxygen species (ROS), aggregated proteins, ER stress response levels, and type of cell death. Results: tPF@PCM had excellent tumor-targeting properties and exhibited satisfactory photothermal-enhanced tumor inhibition efficacy both in vitro and in vivo. Specifically, the phase transition temperature (45 °C) maintained using 808 nm laser irradiation significantly increased the release and catalytic activity of the peroxidase mimic Fe3O4 NPs. This strongly catalyzed the generation of hydroxyl radicals (•OH) via the Fenton reaction in the acidic tumor microenvironment. The redox imbalance subsequently resulted in an increase in the level of damaged proteins in the ER and initiated ER stress. Moreover, the pan-deubiquitinase inhibitor PR-619 blocked the "adaptive" UPR-mediated degradation of these damaged proteins, exacerbating the ER burden. Consequently, irremediable ER stress activated the "terminal" UPR, leading to apoptosis in cancer cells. Conclusion: This ER stress-exacerbating strategy effectively suppresses tumorigenesis, offering novel directions for advances in the treatment of conventional therapy-resistant cancers.


Assuntos
Retículo Endoplasmático , Neoplasias , Animais , Apoptose , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Resposta a Proteínas não Dobradas
13.
Plant Biotechnol J ; 2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34343399

RESUMO

Leaf angle is one of the key factors that determines rice plant architecture. However, the improvement of leaf angle erectness is often accompanied by unfavourable changes in other traits, especially grain size reduction. In this study, we identified the pow1 (put on weight 1) mutant that leads to increased grain size and leaf angle, typical brassinosteroid (BR)-related phenotypes caused by excessive cell proliferation and cell expansion. We show that modulation of the BR biosynthesis genes OsDWARF4 (D4) and D11 and the BR signalling gene D61 could rescue the phenotype of leaf angle but not grain size in the pow1 mutant. We further demonstrated that POW1 functions in grain size regulation by repressing the transactivation activity of the interacting protein TAF2, a highly conserved member of the TFIID transcription initiation complex. Down-regulation of TAF2 rescued the enlarged grain size of pow1 but had little effect on the increased leaf angle phenotype of the mutant. The separable functions of the POW1-TAF2 and POW1-BR modules in grain size and leaf angle control provide a promising strategy for designing varieties with compact plant architecture and increased grain size, thus promoting high-yield breeding in rice.

14.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(3): 447-454, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34180189

RESUMO

Emotion plays an important role in people's cognition and communication. By analyzing electroencephalogram (EEG) signals to identify internal emotions and feedback emotional information in an active or passive way, affective brain-computer interactions can effectively promote human-computer interaction. This paper focuses on emotion recognition using EEG. We systematically evaluate the performance of state-of-the-art feature extraction and classification methods with a public-available dataset for emotion analysis using physiological signals (DEAP). The common random split method will lead to high correlation between training and testing samples. Thus, we use block-wise K fold cross validation. Moreover, we compare the accuracy of emotion recognition with different time window length. The experimental results indicate that 4 s time window is appropriate for sampling. Filter-bank long short-term memory networks (FBLSTM) using differential entropy features as input was proposed. The average accuracy of low and high in valance dimension, arousal dimension and combination of the four in valance-arousal plane is 78.8%, 78.4% and 70.3%, respectively. These results demonstrate the advantage of our emotion recognition model over the current studies in terms of classification accuracy. Our model might provide a novel method for emotion recognition in affective brain-computer interactions.


Assuntos
Memória de Curto Prazo , Redes Neurais de Computação , Nível de Alerta , Eletroencefalografia , Emoções , Humanos
15.
Cell Rep ; 35(5): 109070, 2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-33951441

RESUMO

Four potent native human monoclonal antibodies (mAbs) targeting distinct epitopes on tetanus toxin (TeNT) are isolated with neutralization potency ranging from approximately 17 mg to 6 mg each that are equivalent to 250 IU of human anti-TeNT immunoglobulin. TT0170 binds fragment B, and TT0069 and TT0155 bind fragment AB. mAb TT0067 binds fragment C and blocks the binding of TeNT to gangliosides. The co-crystal structure of TT0067 with fragment C of TeNT at a 2.0-Å resolution demonstrates that mAb TT0067 directly occupies the W pocket of one of the receptor binding sites on TeNT, resulting in blocking the binding of TeNT to ganglioside on the surface of host cells. This study reveals at the atomic level the mechanism of action by the TeNT neutralizing antibody. The key neutralization epitope on the fragment C of TeNT identified in our work provides the critical information for the development of fragment C of TeNT as a better and safer tetanus vaccine.

16.
Nat Commun ; 12(1): 2697, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976229

RESUMO

Although human antibodies elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid (N) protein are profoundly boosted upon infection, little is known about the function of N-reactive antibodies. Herein, we isolate and profile a panel of 32 N protein-specific monoclonal antibodies (mAbs) from a quick recovery coronavirus disease-19 (COVID-19) convalescent patient who has dominant antibody responses to the SARS-CoV-2 N protein rather than to the SARS-CoV-2 spike (S) protein. The complex structure of the N protein RNA binding domain with the highest binding affinity mAb (nCoV396) reveals changes in the epitopes and antigen's allosteric regulation. Functionally, a virus-free complement hyperactivation analysis demonstrates that nCoV396 specifically compromises the N protein-induced complement hyperactivation, which is a risk factor for the morbidity and mortality of COVID-19 patients, thus laying the foundation for the identification of functional anti-N protein mAbs.


Assuntos
Anticorpos Antivirais/farmacologia , COVID-19/imunologia , Ativação do Complemento/efeitos dos fármacos , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , SARS-CoV-2/imunologia , Regulação Alostérica , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/química , Anticorpos Antivirais/imunologia , Afinidade de Anticorpos , Complexo Antígeno-Anticorpo/química , Convalescença , Proteínas do Nucleocapsídeo de Coronavírus/química , Cristalografia por Raios X , Epitopos , Humanos , Fosfoproteínas/química , Fosfoproteínas/imunologia , Conformação Proteica
17.
J Clin Lab Anal ; 35(7): e23853, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34057242

RESUMO

BACKGROUND: Gefitinib is an epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), clinically used to treat patients with non-small cell lung cancer driven by EGFR mutations. Unfortunately, EGFR-TKI resistance has become a clinical problem for the effective treatment of NSCLC patients. The purpose of this study was to explore the effect and mechanism of miR-133a-3p on the gefitinib sensitivity of NSCLC cells. METHODS: The gefitinib-resistant PC9 (PC9/GR) cells were established through repeated long-term exposure to gefitinib for half a year. Then, PC9/GR cells were transfected with miR-133a-3p mimics and PC9 cells were transfected with miR-133a-3p inhibitors to increase or decrease the expression of miR-133a-3p. CCK-8 assay, colony formation assay, and caspase-3 activity assay were employed to detect cell resistance to gefitinib. Quantitative real-time PCR and Western blotting were used to evaluate the levels of miR-133a-3p, SPAG5, and other related genes. Starbase database was used to predict the target gene of miR-133a-3p and the prognosis of NSCLC patients. Target gene of miR-133a-3p was verified through dual-luciferase reporter gene assay. RESULTS: MiR-133a-3p was significantly downregulated in gefitinib-resistant cell line PC9/GR vs. gefitinib-sensitive cell line PC9. Overexpression of miR-133a-3p increased the sensitivity of NSCLC cells to gefitinib and vice versa. Furthermore, SPAG5 is an important target gene of miR-133a-3p, and SPAG5 can reverse miR-133a-3p-mediated gefitinib sensitivity of NSCLC cells. CONCLUSIONS: These findings indicated that miR-133a-3p/SPAG5 axis played a vital role in acquired resistance to gefitinib in NSCLC cells, and miR-133a-3p may represent a potential therapeutic strategy for the treatment of human NSCLC.

18.
IEEE Trans Biomed Eng ; 68(10): 3078-3086, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33661731

RESUMO

Brain machine interfaces (BMIs) used for movement restoration primarily rely on studies of motor decoding. It has been proved that local field potentials (LFPs) from primary motor cortex and premotor cortex of normal rodents could be used for decoding motor signals. However, few studies have explored the decoding performance of these brain areas under motor cortex damage. In this work, we focus on force decoding performance of LFPs spectrum from both ipsilesional caudal forelimb area (CFA) and rostral forelimb area (RFA) of rodents with ischemia over CFA. After three months of ischemia induced by photothrombosis over CFA, the power of high-frequency bands (>120 Hz) from both CFA and RFA can decode force signals by Kalman filters. The fair performance of CFA indicates motor reorganization over penumbra. Further exploration of RFA decoding ability proves that at least four electrodes of RFA should be used on decoding and electrodes far from CFA of stroke rats could achieve almost as good results as those close to CFA of normal rats, which indicates the motor remapping. Experimental results show the long-term stability of PM LFPs decoding performance of stroke rats as the trained Kalman model could be used to accurately decode force some days later which provides a possibility for online decoding system. In conclusion, our work shows that even under CFA ischemia, high-frequency power of LFPs from RFA is still able to accurately decode force signals and has long stability, which provides the possibility of BMIs for motor function reconstruction of chronic stroke patients.

19.
Sci Rep ; 11(1): 808, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436867

RESUMO

Not only does the Dynastes tityus beetle display a reversible color change controlled by differences in humidity, but also, the elytron scale can change color from yellow-green to deep-brown in specified shapes. The results obtained by focused ion beam-scanning electron microscopy (FIB-SEM), show that the epicuticle (EPI) is a permeable layer, and the exocuticle (EXO) is a three-dimensional photonic crystal. To investigate the mechanism of the reversible color change, experiments were conducted to determine the water contact angle, surface chemical composition, and optical reflectance, and the reflective spectrum was simulated. The water on the surface began to permeate into the elytron via the surface elemental composition and channels in the EPI. A structural unit (SU) in the EXO allows local color changes in varied shapes. The reflectance of both yellow-green and deep-brown elytra increases as the incidence angle increases from 0° to 60°. The microstructure and changes in the refractive index are the main factors that influence the process of reversible color change. According to the simulation, the lower reflectance causing the color change to deep-brown results from water infiltration, which increases light absorption. Meanwhile, the waxy layer has no effect on the reflection of light. This study lays the foundation to manufacture engineered photonic materials that undergo controllable changes in iridescent color.


Assuntos
Besouros/fisiologia , Animais , Cor , Simulação por Computador , Fluorescência , Umidade , Iridescência , Óptica e Fotônica/métodos , Refratometria/métodos
20.
IEEE Trans Biomed Eng ; 68(5): 1611-1618, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32991277

RESUMO

OBJECTIVE: The purpose of the present study was to fabricate a novel RF coil exclusively for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners. METHODS: A novel RF coil design has been proposed for visualizing submillimeter tissue structure and probing neuronal activity in cerebral cortex over anesthetized and awake animals on 7T human scanners: a local transmit coil was utilized to save space for auxiliary device installation; 16 receive-only loops were densely arranged over a 5 cm-diameter circular area, with a diameter of 1.3 cm for each loop. RESULTS: In anesthetized macaque experiments, 60 µm T2*-weighted images were successfully obtained with cortical gyri and sulci exquisitely visualized; over awake macaques, bilateral activations of visual areas including V1, V2, V4, and MST were distinctly detected at 1 mm; over the cat, robust activations were recorded in areas 17 and 18 (V1 and V2) as well as in their connected area of lateral geniculate nucleus (LGN) at 0.3 mm resolution. CONCLUSION: The promising brain imaging results along with flexibility in various size use of the presented design can be an effective and maneuverable solution to take one step close towards mesoscale cortical-related imaging. SIGNIFICANCE: High-spatial-resolution brain imaging over large animals by using ultra-high-field (UHF) MRI will be helpful to understand and reveal functional brain organizations and the underlying mechanism in diseases.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Animais , Encéfalo , Gatos , Córtex Cerebral/diagnóstico por imagem , Humanos , Macaca
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...