Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Appl Opt ; 58(29): 8075-8082, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31674363

RESUMO

The optical parameters (extinction or backscatter coefficients) of multi-wavelength beams can be used for the retrieval of the aerosol particle size distribution (APSD). An improved algorithm for APSD and aerosol microphysical parameters (AMPs) is studied and discussed by using only multi-wavelength extinction coefficients data. The regularized algorithm and prior value are combined for the retrieval of APSD and AMPs. The regularization algorithm, based on minimum discrepancy principle and averaging procedure, is used for the retrieval of fine-mode APSD and an averaging procedure that can achieve stable outputs is proposed. The 1% averaging result near the minimum of the discrepancy is selected and verified. Based on the inversion results of fine mode from the regularization algorithm, the lognormal distribution with a prior value (model radius) is applied to reconstruct the coarse mode of APSDs through fitting the data. The comprehensive application of the regularization algorithm and averaging process improves the stability of the inversion in the fine mode, and the use of the prior value broadens the inversion radius range of APSD. The complex refractive index need not be assumed for this method. The inversion error for different types of aerosols is analyzed and studied. The reliability of the algorithm is tested and verified by many typical APSDs and the measured APSDs by particle size spectrometer in different pollution days. The algorithm sensitivity analysis is also provided and discussed. The algorithm can obtain reliable inversion of APSD and AMPs with large radius range.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31676410

RESUMO

The alpha-1 isoform of chicken AMPK situates on the Z-chromosome, in contrast, the other isoforms in birds and the mammalian AMPKα1 are located on the autosomes. The present study aimed to investigate the role of hepatic AMPK signaling in adaptation to nutritional status and the potential sex-specific response in chickens. Hepatic genes and proteins were compared between the two sexes immediately after hatching. From 20d of age, chicks from each sex received feed treatments: Control was fed ad libitum; Fasted was starved for 24 h; Refed was fed for 4 h after a 24 h fasting. As a result, hepatic AMPKα1 mRNA level in males was significantly higher at both ages compared to females, due to the presence of Z-chromosomes. However, this did not make this kinase "male-bias" as it was eventually compensated at a translational level, which was not reported in previous studies. The protein levels and activation of AMPKα were even lower in newly-hatched male compared to female chicks, accompanied with a higher FAS and SREBP-1 gene expressions. Accordingly, hepatic G6PC2 mRNA levels in males were significantly lower associated with lower plasma glucose levels after hatching. Fasting activated hepatic AMPK, which in turn inhibited gene expression of GS, FAS and SREBP-1, and stimulated the downstream G6PC2 in both sexes. These changes recovered after refeeding. In conclusion, AMPK plays a role in adaptation to nutritional environment for both sexes. The Z-linked AMPK did not exert a sex-specific signaling, due to a "translational compensation" of AMPKα1.

3.
Insect Sci ; 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31631529

RESUMO

As one of the most successful intracellular symbiotic bacteria, Wolbachia can infect many arthropods and nematodes. Wolbachia infection usually affects the reproduction of their hosts to promote their own proliferation and transmission. Currently, most of the studies focus on the mechanisms of Wolbachia interactions with host reproduction. However, in addition to distribution in the reproductive tissues, Wolbachia also infect various somatic tissues of their hosts, including the brain. This raises the potential that Wolbachia may influence some somatic processes, such as behaviors in their hosts. So far, information about the effects of Wolbachia infection on host behavior is still very limited. The present review presents the current literature on different aspects of the influence of Wolbachia on various behaviors, including sleep, learning and memory, mating, feeding and aggression in their insect hosts. We then highlight ongoing scientific efforts in the field that need to address to advance this field, which can have significant implications for further developing Wolbachia as environmentally friendly biocontrol agents to control insect-borne diseases and agricultural pests. This article is protected by copyright. All rights reserved.

4.
Ann Surg Oncol ; 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31617119

RESUMO

BACKGROUND: A differential diagnosis of advanced pancreatic cystic neoplasms (PCNs) is critical to determine optimal treatment. The Fukuoka and American Gastroenterological Association (AGA) guidelines are the most widely accepted criteria for the management of PCNs. OBJECTIVE: This study aimed to evaluate the diagnostic value of these guidelines in predicting advanced neoplasia (AN). METHODS: A comprehensive electronic search of the PubMed, EMBASE, Web of Science, Cochrane Library, and Scopus databases was conducted to identify all relevant studies evaluating the Fukuoka and AGA guidelines in surgically resected and histologically confirmed PCNs. Pooled sensitivity, specificity, and diagnostic odds ratios (DORs) were calculated as compound measures of diagnostic accuracy using the random-effects model. Summary of receiver operating characteristic (SROC) curves and the area under the curve (AUC) were also performed. RESULTS: A total of 21 studies with 3723 patients were included in this meta-analysis. Of these studies, 15, 4, and 2 evaluated the Fukuoka guidelines, the AGA guidelines, and both guidelines, respectively. For AN prediction, the Fukuoka guidelines had a pooled sensitivity of 0.67 (95% confidence interval [CI] 0.64-0.70), pooled specificity of 0.64 (95% CI 0.62-0.66), and pooled DOR of 6.28 (95% CI 4.38-9.01), with an AUC of the SROC of 0.78. AGA guidelines showed a pooled sensitivity of 0.59 (95% CI 0.52-0.65), pooled specificity of 0.77 (95% CI 0.74-0.80), and pooled DOR of 5.84 (95% CI 2.60-13.15), with an AUC of 0.79 (95% CI 0.70-0.88). CONCLUSION: When used alone, the Fukuoka and AGA guidelines showed similar but unsatisfactory diagnostic accuracy in the risk stratification of malignant potential of PCN. Thus, we recommend that they be applied only as a broad framework in clinical practice.

5.
Insect Sci ; 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31617302

RESUMO

Wolbachia are gram-negative endosymbionts that are known to cause embryonic lethality when infected male insects mate with uninfected females or with females carrying a different strain of Wolbachia, a situation characterized as cytoplasmic incompatibility (CI). However, the mechanism of CI is not yet fully understood, although recent studies on Drosophila melanogaster have achieved great progress. Here, we found that Wolbachia infection caused changes in the expressions of several immunity-related genes, including significant upregulation of kenny (key), in the testes of Drosophila melanogaster. Overexpression of key in fly testes led to a significant decrease in egg hatch rates when these flies mate with wild type females. Wolbachia-infected females could rescue this embryonic lethality. Furthermore, in key overexpressing testes TUNEL signal was significantly stronger than in the control testes, and the level of reactive oxygen species (ROS) was significantly increased. Overexpression of key also resulted in alterations of some other immunity-related gene expressions, including the downregulation of Zn72D. Knockdown of Zn72D in fly testes also led to a significant decrease in egg hatch rates. These results suggest that Wolbachia might induce the defect in male host fertility by immunity-related pathways and thus cause an oxidative damage and cell death in male testes. This article is protected by copyright. All rights reserved.

6.
Phys Rev E ; 100(3-1): 033214, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31640078

RESUMO

Extensive quantum molecular dynamics (QMD) simulations are performed to determine the equation of state, sound velocity, and phase diagram of middle-Z krypton in a warm dense regime where the pressure (P) is up to 300 GPa and the temperature is up to 60 kK. The shock wave experimental data are used to validate the present theoretical models. It is found that, within the regime of the current density (ρ) and temperature (T), sound velocity can effectively discriminate differences between different theoretical models, and therefore it is more suitable as a benchmark to verify the practicability of models. The QMD-simulated results of the ionic structures and electronic properties imply the occurrence of two kinds of phase transitions, including transition from a solidlike to fluid state and that from an insulator to conductive fluid in this T-P regime. The calculated electrical conductivities confirm that the metallization transition occurs at about 60 GPa and 17.5 kK along the principal Hugoniot. With the help of simulation results and experimental data, a comprehensive phase diagram for krypton is constructed by using the solid-fluid and insulator-metal fluid phase boundaries, which fills the gap of the experimental work [Proc. Natl. Acad. Sci. USA 112, 7925 (2015)PNASA60027-842410.1073/pnas.1421801112]. These results will provide an instructive basis for the experimental investigations of rare gases over a wide T-P range.

7.
Glia ; 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31626364

RESUMO

Glial fibrillary acidic protein (GFAP), a type III intermediate filament, is a marker of mature astrocytes. The expression of GFAP gene is regulated by many transcription factors (TFs), mainly Janus kinase-2/signal transducer and activator of transcription 3 cascade and nuclear factor κ-light-chain-enhancer of activated B cell signaling. GFAP expression is also modulated by protein kinase and other signaling molecules that are elicited by neuronal activity and hormones. Abnormal expression of GFAP proteins occurs in neuroinflammation, neurodegeneration, brain edema-eliciting diseases, traumatic brain injury, psychiatric disorders and others. GFAP, mainly in α-isoform, is the major component of cytoskeleton and the scaffold of astrocytes, which is essential for the maintenance of astrocytic structure and shape. GFAP also has highly morphological plasticity because of its quick changes in assembling and polymerizing states in response to environmental challenges. This plasticity and its corresponding cellular morphological changes endow astrocytes the functions of physical barrier between adjacent neurons and stabilizer of extracellular environment. Moreover, GFAP colocalizes and even molecularly associates with many functional molecules. This feature allows GFAP to function as a platform for direct interactions between different molecules. Last, GFAP involves transportation and localization of other functional proteins and thus serves as a protein transport guide in astrocytes. This guiding role of GFAP involves an elastic retraction and extension cytoskeletal network that couples with GFAP reassembling, transporting, and membrane protein recycling machinery. This paper reviews our current understanding of the expression and functions of GFAP as well as their regulation.

8.
J Anim Sci ; 97(11): 4488-4495, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586423

RESUMO

Adenosine monophosphate-activated protein kinase (AMPK) acts as a sensor of cellular energy changes and is involved in the control of food intake. A total of 216 1-d-old broilers were randomly allotted into 3 treatments with 6 replicates per treatment and 12 broilers in each cage. The dietary treatments included 1) high-energy (HE) diet (3,500 kcal/kg), 2) normal-energy (NE) diet (3,200 kcal/kg), and 3) low-energy (LE) diet (2,900 kcal/kg). The present study was conducted to investigate the effects of dietary energy level on appetite and the central AMPK signal pathway. The results showed that a HE diet increased average daily gain (ADG), whereas a LE diet had the opposite effect (P < 0.05, N = 6). The average daily feed intake (ADFI) of the chickens fed the LE diet was significantly higher than that of the control (P < 0.05, N = 6). Overall, the feed conversion rate gradually decreased with increasing dietary energy level (P < 0.05, N = 6). Moreover, the chickens fed the LE and HE diets demonstrated markedly improved urea content compared with the control group (P < 0.0001, N = 8). The triglyceride (TG) content in the LE group was obviously higher than that in the HE group but showed no change compared with the control (P = 0.0678, N = 8). The abdominal fat rate gradually increased with increased dietary energy level (P = 0.0927, N = 8). The HE group showed downregulated gene expression levels of liver kinase B1 (LKB1), neuropeptide Y (NPY), cholecystokinin (CCK), and glucocorticoid receptor (GR) in the hypothalamus compared with the control group (P < 0.05, N = 8). However, LE treatment significantly increased the mRNA level of AMP-activated protein kinase α2 (AMPKα2) compared with other groups (P = 0.0110, N = 8). In conclusion, a HE diet inhibited appetite and central AMPK signaling. In contrast, a LE diet activated central AMPK and appetite. Overall, the central AMPK signal pathway and appetite were modulated in accordance with the energy level in the diet to regulate nutritional status and maintain energy homeostasis in birds.

9.
J Cell Mol Med ; 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576658

RESUMO

Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR-1914 in HCC. Here, we first confirmed that miR-1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR-1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR-1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR-1914 in HCC cells. In addition, down-regulation of AKT phosphorylation inhibited the effects of miR-1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR-1914 in HCC; thus, lncRNA DUXAP10 regulated miR-1914 expression and modulated the GPR39/PI3K/AKT-mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10-regulated miR-1914 plays a functional role in inhibiting HCC progression by targeting GPR39-mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.

10.
mSphere ; 4(5)2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511371

RESUMO

The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions.IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.

11.
Comput Biol Med ; 114: 103444, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31542646

RESUMO

Atrial fibrillation (AF) is the most prevalent form of cardiac arrhythmia. The atrial wall thickness (AWT) can potentially improve our understanding of the mechanism underlying atrial structure that drives AF and provides important clinical information. However, most existing studies for estimating AWT rely on ruler-based measurements performed on only a few selected locations in 2D or 3D using digital calipers. Only a few studies have developed automatic approaches to estimate the AWT in the left atrium, and there are currently no methods to robustly estimate the AWT of both atrial chambers. Therefore, we have developed a computational pipeline to automatically calculate the 3D AWT across bi-atrial chambers and extensively validated our pipeline on both ex vivo and in vivo human atria data. The atrial geometry was first obtained by segmenting the atrial wall from the MRIs using a novel machine learning approach. The epicardial and endocardial surfaces were then separated using a multi-planar convex hull approach to define boundary conditions, from which, a Laplace equation was solved numerically to automatically separate bi-atrial chambers. To robustly estimate the AWT in each atrial chamber, coupled partial differential equations by coupling the Laplace solution with two surface trajectory functions were formulated and solved. Our pipeline enabled the reconstruction and visualization of the 3D AWT for bi-atrial chambers with a relative error of 8% and outperformed existing algorithms by >7%. Our approach can potentially lead to improved clinical diagnosis, patient stratification, and clinical guidance during ablation treatment for patients with AF.

12.
Small ; 15(45): e1903816, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31532922

RESUMO

Major challenges in developing 2D transition-metal disulfides (TMDs) as anode materials for lithium/sodium ion batteries (LIBs/SIBs) lie in rational design and targeted synthesis of TMD-based nanocomposite structures with precisely controlled ion and electron transport. Herein, a general and scalable solvent-exchange strategy is presented for uniform dispersion of few-layer MoS2 (f-MoS2 ) from high-boiling-point solvents (N-methyl-2-pyrrolidone (NMP), N,N-dimethyl formaldehyde (DMF), etc.) into low-boiling-point solvents (water, ethanol, etc.). The solvent-exchange strategy dramatically simplifies high-yield production of dispersible MoS2 nanosheets as well as facilitates subsequent decoration of MoS2 for various applications. As a demonstration, MoS2 -decorated nitrogen-rich carbon spheres (MoS2 -NCS) are prepared via in situ growth of polypyrrole and subsequent pyrolysis. Benefiting from its ultrathin feature, largely exposed active surface, highly conductive framework and excellent structural integrity, the 2D core-shell architecture of MoS2 -NCS exhibits an outstanding reversible capacity and excellent cycling performance, achieving high initial discharge capacity of 1087.5 and 508.6 mA h g-1 at 0.1 A g-1 , capacity retentions of 95.6% and 94.2% after 500 and 250 charge/discharge cycles at 1 A g-1 , for lithium/sodium ion storages, respectively.

13.
J Periodontol ; 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31489644

RESUMO

BACKGROUD: The present study was to determine the role of Toll-like receptor 4 (TLR4) signaling in inflammation and alveolar bone resorption using a murine model of Porphyromonas gingivalis (P. gingivalis) associated ligature-induced peri-implantitis. METHODS: Smooth surface titanium implants were placed in the left maxilla alveolar bone 6 weeks after extraction of first and second molars in Wild-type (WT) and TLR4-/- (TLR4 KO) mice. Silk ligatures immersed with P. gingivalis were tied around the implants 4 weeks after the implant placement and confirmation of osteointegration. Two weeks after the ligation, bone resorption, osteoclastogenesis, cellular inflammatory responses and gingival mRNA expression levels of cytokines were assessed by micro-computed tomography, Tartrate-resistant acid phosphatase (TRAP) staining, immunobiological examination and Real-time quantitative PCR respectively. RESULTS: In both WT and TLR4 KO mice, the bone resorption around implants was significantly increased in the P. gingivalis/ligation group compared to control group. In P. gingivalis/ligation group, the levels of bone resorption, TRAP+ cell formation, and gingival CD3+ and CD45+ cell infiltration were significantly decreased in TLR4 KO mice compared to that in WT mice. RANKL/OPG ratio was significantly increased after P. gingivalis/ligation treatment in WT mice not in TLR4 KO mice. When comparing the P. gingivalis/ligation group with the respective control group, gingival mRNA expressions of IL-1ß, IFN-γ and 1L-17 were significantly increased in TLR4 KO mice. CONCLUSIONS: This study suggests that TLR4 mediates alveolar bone resorption in P. gingivalis associated ligature-induced peri-implantitis through regulation of immune B cell infiltration, RANKL/OPG expression ratio, and differential inflammatory cytokine production. This article is protected by copyright. All rights reserved.

14.
J Insect Physiol ; 118: 103938, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31491378

RESUMO

Wolbachia is a genus of endosymbiotic bacteria that induce a wide range of effects on their insect hosts. Cytoplasmic incompatibility (CI) is the most common phenotype mediated by Wolbachia and results in embryonic lethality when Wolbachia-infected males mate with uninfected females. Studies have revealed that bacteria can regulate many cellular processes in their hosts using small non-coding RNAs, so we investigated the involvement of small RNAs (sRNAs) in CI. Comparison of sRNA libraries between Wolbachia-infected and uninfected Drosophila melanogaster testes revealed 18 novel microRNAs (miRNAs), of which 12 were expressed specifically in Wolbachia-infected flies and one specifically in Wolbachia-uninfected flies. Furthermore, ten miRNAs showed differential expression, with four upregulated and six downregulated in Wolbachia-infected flies. Of the upregulated miRNAs, nov-miR-12 exhibited the highest upregulation in the testes of D. melanogaster. We then identified pipsqueak (psq) as the target gene of nov-miR-12 with the greatest complementarity in its 3' untranslated region (UTR). Wolbachia infection was correlated with reduced psq expression in D. melanogaster, and luciferase assays demonstrated that nov-miR-12 could downregulate psq through binding to its 3'UTR region. Knockdown of psq in Wolbachia-free fly testes significantly reduced egg hatching rate and mimicked the cellular abnormalities of Wolbachia-induced CI in embryos, including asynchronous nuclear division, chromatin bridging, and chromatin fragmentation. These results suggest that Wolbachia may induce CI in insect hosts by miRNA-mediated changes in host gene expression. Moreover, these findings reveal a potential molecular strategy for elucidating the complex interactions between endosymbionts and their insect hosts, such as Wolbachia-driven CI.

15.
Brain Res ; : 146474, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31557476

RESUMO

Intranasal insulin exerts neuroprotective effects in a variety of neurological diseases. Whether intranasal insulin affects epileptic activity and whether it has neuroprotective effects in epileptic diseases is however still unknown. In this study we show that low-dose intranasal insulin inhibited kainic acid (KA)- or pentylenetetrazole (PTZ)-induced acute seizures and reduced epileptic discharge activities in mice, potentially by alleviating the increase in seizure-induced glutamate in the hippocampus. Meanwhile, intranasal insulin increased GABA levels and the activities of hippocampal theta, which may affect the excitability of the hippocampus. In chronic KA-induced epilepsy, low-dose intranasal insulin reduces the frequency of spontaneous recurrent seizures and epileptic discharges, while it increases theta energy and thereby improves spatial memory. Larger doses of intranasal insulin increased the frequency of seizures but did not aggravate cognitive impairment, suggesting that the frequency of seizures may not be related to impaired cognitive function. Overall, our findings show that low-dose intranasal insulin inhibits epileptic events and improves cognitive impairment in epileptic mice, suggesting that learning and memory can be improved by intranasal insulin. However, larger doses might increase the risk of epileptic seizures.

16.
Arch Insect Biochem Physiol ; 102(4): e21612, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31482645

RESUMO

Zn72D encodes the Drosophila zinc finger protein Zn72D. It was first identified to be involved in phagocytosis and indicated to have a role in immunity. Then it was demonstrated to have a function in RNA splicing and dosage compensation in Drosophila melanogaster. In this study, we discovered a new function of Zn72D in male fertility. We showed that knockdown of Zn72D in fly testes caused an extremely low egg hatch rate. Immunofluorescence staining of Zn72D knockdown testes exhibited scattered spermatid nuclei and no actin cones or individualization complexes (ICs) during spermiogenesis, whereas the early-stage germ cells and the spermatocytes were observed clearly. There were no mature sperms in the seminal vesicles of Zn72D knockdown fly testes, although a few sperms could be found close to the seminal vesicle. We further showed that many cytoskeleton-related genes were significantly downregulated in fly testes due to Zn72D knockdown. Taken together these findings suggest that Zn72D may have an important function in spermatogenesis by sustaining the cytoskeleton-based morphogenesis and individualization thus ensuring the proper formation of sperm in D. melanogaster.

17.
Appl Opt ; 58(19): 5170-5178, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503611

RESUMO

Aimed at addressing the disadvantages of restricted retrieval height caused by signal-to-noise ratio (SNR) differences between high-quantum-number and low-quantum-number pure rotational Raman scattering signals (PRRSs) obtained with the traditional retrieval method, an optimized retrieval method is proposed for atmospheric temperature profiling based on rotational Raman lidar. This method allows independent alternating solutions to high- and low-quantum-number PRRSs, where high-quantum-number PRRS lidar returns are used to solve the channel constant, and low-quantum-number PRRS returns with a high SNR are used for retrieving temperature profiles. The system sensitivity, SNR, and statistical error in temperature measurements by the two methods are first simulated and discussed, and the results are then compared to show that a higher SNR and stable sensitivity can be attributed to stable statistical errors with the optimized method. A further assessment is demonstrated by three sets of lidar data from a multifunctional Raman-Mie lidar system at the Xi'an University of Technology (34.233°N, 108.911°E). The retrieved atmospheric temperature profiles under different weather conditions are compared with radiosonde data; then, the temperature deviations are further evaluated, and a correlation analysis is performed to evaluate the reliability and correctness of the temperature data obtained by the optimized retrieval method. The results show that the effective temperature retrieval height can be greatly improved from 17 to 25 km under clear weather conditions, and a high correlation >0.99 and stable relative deviations of less than 5 K can be obtained up to 25 km. Additionally, the retrieval height can be extended from 8 to 16 km in cloudy weather, and the existence of an inversion layer can be successfully captured as well. It is evident that the proposed optimized method will provide a new and reliable retrieval theorem for atmospheric temperature profiles, and the proposed method is propitious for retrieving temperature profiles over a larger height range, even up to the lower stratosphere. It is also deduced that the proposed algorithm can favorably simplify the spectroscopic system for temperature detection in the future when the channel constant is determined in advance.

18.
Bioorg Med Chem Lett ; 29(19): 126604, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31445854

RESUMO

This manuscript describes the discovery of a series of macrocyclic inhibitors of FXIa with oral bioavailability. Assisted by structure based drug design and ligand bound X-ray crystal structures, the group linking the P1 moiety to the macrocyclic core was modified with the goal of reducing H-bond donors to improve pharmacokinetic performance versus 9. This effort resulted in the discovery of several cyclic P1 linkers, exemplified by 10, that are constrained mimics of the bioactive conformation displayed by the acrylamide linker of 9. These cyclic P1 linkers demonstrated enhanced bioavailability and improved potency.

19.
J Am Chem Soc ; 141(37): 14853-14863, 2019 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-31448592

RESUMO

Controlling the complex dynamics of active colloids-the autonomous locomotion of colloidal particles and their spontaneous assembly-is challenging yet crucial for creating functional, out-of-equilibrium colloidal systems potentially useful for nano- and micromachines. Herein, by introducing the synthesis of active "patchy" colloids of various low-symmetry shapes, we demonstrate that the dynamics of such systems can be precisely tuned. The low-symmetry patchy colloids are made in bulk via a cluster-encapsulation-dewetting method. They carry essential information encoded in their shapes (particle geometry, number, size, and configurations of surface patches, etc.) that programs their locomotive and assembling behaviors. Under AC electric field, we show that the velocity of particle propulsion and the ability to brake and steer can be modulated by having two asymmetrical patches with various bending angles. The assembly of monopatch particles leads to the formation of dynamic and reconfigurable structures such as spinners and "cooperative swimmers" depending on the particle's aspect ratios. A particle with two patches of different sizes allows for "directional bonding", a concept popular in static assemblies but rare in dynamic ones. With the capability to make tunable and complex shapes, we anticipate the discovery of a diverse range of new dynamics and structures when other external stimuli (e.g., magnetic, optical, chemical, etc.) are employed and spark synergy with shapes.

20.
Crit Care Med ; 82(11): 845-848, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31453864

RESUMO

BACKGROUND: Ovarian stimulation with clomiphene (CC) or progestin has been applied for patients with diminished ovarian reserve (DOR). However, it remains unclear which treatment confers greater benefits. This study aimed to compare the outcomes of progestin-primed ovarian stimulation (PPOS) protocol vs CC-primed ovarian stimulation (CPOS) in infertile women with DOR. METHODS: A before-and-after self-controlled study was conducted to retrospectively investigate the data from 50 infertile women with DOR, who failed to conceive in their first in vitro fertilization/intracytoplasmic sperm injection-frozen embryo transfer cycle when stimulated with CPOS, and switched to PPOS, in the Reproductive Medicine Center of Changzhou Maternal and Child Health Care Hospital. RESULTS: Our results showed that PPOS significantly suppressed the luteinizing hormone (LH) surge and yielded more satisfactory results in patients with DOR, including increased number of retrieved oocytes, MII mature oocytes, normal fertilized oocytes, cleaved embryos, high-grade embryos, cryopreserved embryos, pregnancy rate, live-birth rate, and decreased miscarriage rates. CONCLUSION: Our study demonstrated that compared with CPOS protocol, PPOS protocol could not only suppress the LH surge but also improved the quantity, particularly the quality of oocytes in patients with DOR, suggesting that PPOS treatment is more effective than CPOS for patients with DOR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA