Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Mais filtros

Base de dados
Intervalo de ano de publicação
Int J Mol Med ; 48(3)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34278450


Endometrial cancer (EC) is widely known as an aggressive malignancy. Due to the limited therapeutic options and poor prognosis of patients with advanced­stage EC, there is a need to identify effective alternative treatments. Chrysin is a naturally active flavonoid (5,7­dihydroxyflavone), which has been demonstrated to exert anticancer effects and may present a novel strategy for EC treatment. However, the role of chrysin in EC remains largely unclear. The aim of the present study was to examine the anticancer effects of chrysin on EC. The results revealed that, in addition to apoptosis, chrysin increased the LC3II expression levels and markedly accelerated the autophagic flux, suggesting that chrysin induced both the autophagy and apoptosis of EC cells. Furthermore, the inhibition of autophagy by chloroquine enhanced the inhibitory effect on cell proliferation and the promotion of the chrysin­induced apoptosis of EC cells, indicating that chrysin­induced autophagy was a cytoprotective mechanism. Additionally, chrysin led to the production of intracellular reactive oxygen species (ROS). N­acetylcysteine (NAC) pretreatment significantly inhibited chrysin­induced autophagy, suggesting that ROS activated autophagy induced by chrysin in EC cells. Furthermore, the phosphorylated (p­)Akt and p­mTOR levels were significantly decreased in a concentration­dependent manner following treatment with chrysin, while NAC blocked these effects. Taken together, these findings demonstrated that chrysin­induced autophagy via the inactivation of the ROS­mediated Akt/mTOR signaling pathway in EC cells.

Plants (Basel) ; 9(11)2020 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33113801


The lotus (Nelumbo nucifera) is one of the most popular aquatic plants in Asia, and has emerged as a novel model for studying flower and rhizome development, and primary and secondary metabolite accumulation. Here, we developed a highly efficient callus induction system for the lotus by optimizing a series of key factors that affect callus formation. The highest efficient callus production was induced on immature cotyledon and embryo explants grown on Murashige and Skoog (MS) basal medium containing an optimized combination of 3 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L 6-benzylaminopurine (6-BA). In addition, lotus callus induction was proven to be influenced by lotus genotypes, light conditions, the developmental stages of explants and the time of explant sampling. Collecting immature cotyledons from seeds of the genotype "Shilihe 1", at 9 days post pollination, and to culture the explants in darkness, are proposed as the optimum conditions for lotus callus induction. Interestingly, highly efficient callus induction was also observed in explants of immature embryo derived aseptic seedlings; and a small amount of lotus benzylisoquinoline alkaloid (BIA) and obvious expression of BIA biosynthetic genes were detected in lotus callus.

BMC Plant Biol ; 20(1): 457, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33023477


BACKGROUND: Starch in the lotus seed contains a high proportion of amylose, which endows lotus seed a promising property in the development of hypoglycemic and low-glycemic index functional food. Currently, improving starch content is one of the major goals for seed-lotus breeding. ADP-glucose pyrophosphorylase (AGPase) plays an essential role in regulating starch biosynthesis in plants, but little is known about its characterization in lotus. RESULTS: We describe the nutritional compositions of lotus seed among 30 varieties with starch as a major component. Comparative transcriptome analysis showed that AGPase genes were differentially expressed in two varieties (CA and JX) with significant different starch content. Seven putative AGPase genes were identified in the lotus genome (Nelumbo nucifera Gaertn.), which could be grouped into two subfamilies. Selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of AGPase genes. Expression analysis revealed that lotus AGPase genes have varying expression patterns, with NnAGPL2a and NnAGPS1a as the most predominantly expressed, especially in seed and rhizome. NnAGPL2a and NnAGPS1a were co-expressed with a number of starch and sucrose metabolism pathway related genes, and their expressions were accompanied by increased AGPase activity and starch content in lotus seed. CONCLUSIONS: Seven AGPase genes were characterized in lotus, with NnAGPL2a and NnAGPS1a, as the key genes involved in starch biosynthesis in lotus seed. These results considerably extend our understanding on lotus AGPase genes and provide theoretical basis for breeding new lotus varieties with high-starch content.

Glucose-1-Fosfato Adenililtransferase/genética , Nelumbo/enzimologia , Nelumbo/genética , Sementes/metabolismo , Amido/biossíntese , Evolução Molecular , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Genes de Plantas , Variação Genética , Glucose-1-Fosfato Adenililtransferase/metabolismo , Nelumbo/química , Valor Nutritivo , Melhoramento Vegetal , Sementes/química