Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Sci Total Environ ; 802: 149796, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34464787

RESUMO

Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.


Assuntos
Arsênio , Poluentes do Solo , Arseniatos/análise , Arsênio/análise , Poluição Ambiental , Humanos , Fósforo , Plantas , Solo , Poluentes do Solo/análise
2.
Int Rev Immunol ; : 1-12, 2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34726960

RESUMO

Lipopolysaccharide (LPS) is the major component of the outer membrane of Gram-negative bacteria. It is found from intestinal microbes in the circulatory system and considered a trigger factor for low-grade inflammation in obesity. High-fat diet intake and its related obesity can cause gut microbiota disorder, leading to increased gut permeability, paracellular absorption and transcellular transport of endogenous endotoxin in the cardiovascular system. High-fat diet intake can also increase plasma LPS levels, and causing chronic or "low-grade" inflammation. In this review article, we summarize the recent research advancements on the mechanism of low-grade inflammation and its related obesity. We also propose several approaches that can be used to reduce endogenous endotoxin absorption.Supplemental data for this article is available online at https://doi.org/10.1080/08830185.2021.1996573 .

3.
Math Biosci Eng ; 18(6): 8084-8095, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34814290

RESUMO

The purpose of this study was to assess the overall survival of patients with HGG using a nomogram which combines the optimized radiomics with deep signatures extracted from 3D Magnetic Resonance Images (MRI) as well as clinical predictors. One training cohort of 168 HGG patients and one validation cohort of 42 HGG patients were enrolled in this study. From each patient's 3D MRI, 1284 radiomics features were extracted, and 8192 deep features were extracted via transfer learning. By using Least Absolute Shrinkage and Selection Operator (LASSO) regression to select features, the radiomics signatures and deep signatures were generated. The radiomics and deep features were then analyzed synthetically to generate a combined signature. Finally, the nomogram was developed by integrating the combined signature and clinical predictors. The radiomics and deep signatures were significantly associated with HGG patients' survival time. The signature derived from the synthesized radiomics and deep features showed a better prognostic performance than those from radiomics or deep features alone. The nomogram we developed takes the advantages of both radiomics and deep signatures, and also integrates the predictive ability of clinical indicators. The calibration curve shows our predicted survival time by the nomogram was very close to the actual time.

4.
Front Microbiol ; 12: 756752, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34764946

RESUMO

Arbuscular mycorrhizal fungi (AMF) are present in paddy fields, where they suffer from periodic soil flooding and sometimes shading stress, but their interaction with rice plants in these environments is not yet fully explained. Based on two greenhouse experiments, we examined rice-growth response to AMF under different flooding and/or shading regimes to survey the regulatory effects of flooding on the mycorrhizal responses of rice plants under different light conditions. AMF had positive or neutral effects on the growth and yields of both tested rice varieties under non-flooding conditions but suppressed them under all flooding and/or shading regimes, emphasizing the high importance of flooding and shading conditions in determining the mycorrhizal effects. Further analyses indicated that flooding and shading both reduced the AMF colonization and extraradical hyphal density (EHD), implying a possible reduction of carbon investment from rice to AMF. The expression profiles of mycorrhizal P pathway marker genes (GintPT and OsPT11) suggested the P delivery from AMF to rice roots under all flooding and shading conditions. Nevertheless, flooding and shading both decreased the mycorrhizal P benefit of rice plants, as indicated by the significant decrease of mycorrhizal P responses (MPRs), contributing to the negative mycorrhizal effects on rice production. The expression profiles of rice defense marker genes OsPR1 and OsPBZ1 suggested that regardless of mycorrhizal growth responses (MGRs), AMF colonization triggered the basal defense response, especially under shading conditions, implying the multifaceted functions of AMF symbiosis and their effects on rice performance. In conclusion, this study found that flooding and shading both modulated the outcome of AMF symbiosis for rice plants, partially by influencing the mycorrhizal P benefit. This finding has important implications for AMF application in rice production.

5.
J Immunol Res ; 2021: 3236384, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708131

RESUMO

Background: Bladder cancer is the tenth most common cancer worldwide. Valuable biomarkers in the field of diagnostic bladder cancer are urgently required. Method: Here, the gene expression matrix and clinical data were obtained from The Cancer Genome Atlas (TCGA), GSE13507, GSE32894, and Mariathasan et al. Five prognostic genes were identified by the univariate, robust, and multivariate Cox's regression and were used to develop a prognosis-related model. The Kaplan-Meier survival curves and receiver operating characteristics were used to evaluate the model's effectiveness. The potential biological functions of the selected genes were analyzed using CIBERSORT and ESTIMATE algorithms. Cancer Therapeutics Response Portal (CTRP) and PRISM datasets were used to identify drugs with high sensitivity. Subsequently, using the bladder cancer (BLCA) cell lines, the role of TNFRSF14 was determined by Western blotting, cell proliferation assay, and 5-ethynyl-20-deoxyuridine assay. Results: GSDMB, CLEC2D, APOL2, TNFRSF14, and GBP2 were selected as prognostic genes in bladder cancer patients. The model's irreplaceable reliability was validated by the training and validation cohorts. CD8+ T cells were highly infiltrated in the high-TNFRSF14-expression group, and M2 macrophages were the opposite. Higher expression of TNFRSF14 was associated with higher expression levels of LCK, interferon, MHC-I, and MHC-II, while risk score was the opposite. Many compounds with higher sensitivity for treating bladder cancer patients in the low-TNFRSF14-expression group were identified, with obatoclax being a potential drug most likely to treat patients in the low-TNFRSF14-expression group. Finally, the proliferation of BLCA cell lines was increased in the TNFRSF14-reduced group, and the differential expression was identified. TNFRSF14 plays a role in bladder cancer progression through the Wnt/ß-catenin-dependent pathway. TNFRSF14 is a potential protective biomarker involved in cell proliferation in BLCA. Conclusion: We conducted a study to establish a 5-gene score model, providing reliable prediction for the outcome of bladder cancer patients and therapeutic drugs to individualize therapy. Our findings provide a signature that might help determine the optimal treatment for individual patients with bladder cancer.

6.
Cell Death Dis ; 12(11): 967, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671019

RESUMO

RAN binding protein 10 (RANBP10), a ubiquitously expressed and evolutionarily conserved protein, as a RAN-GTP exchange factor (GEF) to regulate several factors involved in cellular progression. Previous studies showed that RANBP10 was overexpressed in prostate cancer cells and was responsible for androgen receptor (AR) activation. However, the biological function of RANBP10 in glioblastoma (GBM) has not been studied. Here, we found that RANBP10 was overexpressed in GBM, and high RANBP10 expression was closely linked to poor survival of patients with GBM. Downregulation of RANBP10 significantly inhibited cell proliferation, migration, invasion, and tumor growth of GBM cells. In addition, we revealed that RANBP10 could suppress the promoter activity of FBXW7, and thereby increase the protein stability of c-Myc in GBM cells. Silencing of FBXW7 in RANBP10-knockdown GBM cells could partly negate the effects induced by RANBP10 downregulation. Taken together, our findings established that RANBP10 significantly promoted GBM progression by control of the FBXW7-c-Myc axis, and suggest that RANBP10 may be a potential target in GBM.

7.
J Thorac Dis ; 13(8): 4650-4660, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34527306

RESUMO

Background: Avian influenza A (H7N9) virus has caused more than 1,500 cases of human infection since its emergence in early 2013. Displaying little or no pathogenicity in poultry, but a 40% case-fatality rate in humans, five waves of H7N9 human infections occurred in China during 2013-2017, caused solely by a low pathogenicity strain. However, avian isolates possessing a polybasic connecting peptide in the hemagglutinin (HA) protein were detected in mid-2016, indicating that a highly pathogenic virus had emerged and was co-circulating with the low pathogenicity strains. Methods: Here we characterize the pathogenicity of a newly emerged human H7N9 variant with a PEVPKRKRTAR/GLF insertion motif at the cleavage site of the HA protein in vitro and in vivo. Results: This variant replicates in MDCK cells independently of TPCK-trypsin, which is indicative of high pathogenicity in chickens. The 50% mouse lethal dose (MLD50) of this novel isolate was less than 10 plaque forming units (PFU), compared with 3.16×104 for an identical virus lacking the polybasic insertion, indicating a high virulence phenotype. Conclusions: Our results demonstrate that the multiple basic amino acid insertion in the HA protein of the H7N9 variant confers high virulence in mammals, highlighting a potential risk to humans. Continuous viral surveillance is therefore necessary in the China region to improve pandemic preparedness.

8.
Math Biosci Eng ; 18(5): 6198-6215, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34517530

RESUMO

The purpose of this study was to explore whether the Nomogram, which was constructed by combining the Deep learning and Radiomic features of T2-weighted MR images with Clinical factors (NDRC), could accurately predict placenta invasion. This retrospective study included 72 pregnant women with pathologically confirmed placenta invasion and 40 pregnant women with normal placenta. After 24 gestational weeks, all participants underwent magnetic resonance imaging. The uterus and placenta regions were segmented in magnetic resonance images on sagittal T2WI. Ninety-three radiomics features were extracted from the placenta region, and 128 deep features were extracted from the uterus region using a deep neural network. The least absolute shrinkage and selection operator (LASSO) algorithm was used to filter these 221 features and to form the combined signature. Then the combined signature (CS) and clinical factors were combined to construct a nomogram. The accuracy, sensitivity, specificity and AUC of the nomogram were compared with four machine learning methods. The model NDRC was trained on the dataset of 78 pregnant women in the training cohort. Finally, the model NDRC was compared with four machine learning methods on the independent validation cohort of 34 pregnant women. The results showed that the prediction accuracy, sensitivity, specificity and AUC of the NDRC model were 0.941, 0.952, 0.923 and 0.985 respectively, which outperforms the traditional machine learning methods which rely on radiomics features and deep learning features alone.


Assuntos
Aprendizado Profundo , Feminino , Humanos , Imageamento por Ressonância Magnética , Nomogramas , Placenta/diagnóstico por imagem , Gravidez , Estudos Retrospectivos
9.
J Transl Med ; 19(1): 409, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579753

RESUMO

BACKGROUND: The Wnt signaling pathway is core to the growth of bladder tumors. Epithelial-to-mesenchymal transition (EMT) is significant for bladder tumor metastasis. Nevertheless, the relationship between the Wnt signaling pathway, outcomes of bladder cancer (BLCA), and the specific mechanisms driving immune infiltration have not been studied. METHODS: We obtained Wnt pathway-related gene mRNA and clinicopathological data from the Cancer Genome Atlas (TCGA). We obtained 34 genes that were greatly correlated with outcome using univariate Cox regression analysis and conducted a completely randomized data t-test to perform clinical staging. According to the single-sample gene set enrichment analysis (ssGSEA), the weighted correlation network analysis (WGCNA) was applied to identify relevant biological functions. Various subtypes were identified using consensus cluster analysis. Univariate Cox regression and least absolute shrinkage sum selection operator-Cox regression algorithm analysis were conducted on TCGA and Gene Expression Omnibus data to identify risk characteristics. The Kaplan-Meier method and receiver running feature curves were adopted to calculate overall survival. Single-sample gene set enrichment analysis (ssGSEA) was adopted for the assessment of the degree of immune infiltration. Then, we demonstrated the relationship between PPP2CB and EMT function in two cell lines. RESULTS: Thirty-four Wnt signaling pathway-related genes were risk factors for BLCA outcome, and their expression levels differed by clinical stage. The co-expression of WGCNA showed the relationship between the Wnt signaling pathway and biological functions and was closely associated with EMT. We divided BLCA patients into two subtypes using consensus clustering. Survival curves and clinical analysis showed that the Wnt pathway enriched group had worse outcomes. The Wnt signature showed the significance of the outcome for MAPK10, PPP2CB, and RAC3. Based on these genes, the degree of immune infiltration was evaluated. Cell function experiments suggested that PPP2CB drives the proliferation and migration of BLCA cells. CONCLUSION: We found that Wnt signaling pathway-related genes can be used as prognostic risk factors for BLCA, and the Wnt signaling pathway is a cancer-promoting signaling pathway associated with EMT. We identified three critical genes: MAPK10, RAC3, and PPP2CB. The genes in these three Wnt signaling pathways are associated with tumor cell EMT and immune cell infiltration. The most important finding was that these three genes were independent prognostic factors for BLCA.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Biomarcadores Tumorais/genética , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Humanos , RNA Mensageiro/genética , Neoplasias da Bexiga Urinária/genética , Via de Sinalização Wnt/genética
10.
New Phytol ; 232(5): 2057-2070, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34480752

RESUMO

Indole-3-acetic acid (IAA) is a predominant form of active auxin in plants. In addition to de novo biosynthesis and release from its conjugate forms, IAA can be converted from its precursor indole-3-butyric acid (IBA). The IBA-derived IAA may help drive root hair elongation in Arabidopsis thaliana seedlings, but how the IBA-to-IAA conversion is regulated and affects IAA function requires further investigation. In this study, HOMEOBOX PROTEIN 24 (HB24), a transcription factor in the zinc finger-homeodomain family (ZF-HD family) of proteins, was identified. With loss of HB24 function, defective growth occurred in root hairs. INDOLE-3-BUTYRIC ACID RESPONSE 1 (IBR1), which encodes an enzyme involved in the IBA-to-IAA conversion, was identified as a direct target of HB24 for the control of root hair elongation. The exogenous IAA or auxin analogue 1-naphthalene acetic acid (NAA) both rescued the root hair growth phenotype of hb24 mutants, but IBA did not, suggesting a role for HB24 in the IBA-to-IAA conversion. Therefore, HB24 participates in root hair elongation by upregulating the expression of IBR1 and subsequently promoting the IBA-to-IAA conversion. Moreover, IAA also elevated the expression of HB24, suggesting a feedback loop is involved in IBA-to-IAA conversion-mediated root hair elongation.

11.
Front Pharmacol ; 12: 721273, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393799

RESUMO

Chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide, is widely considered to be related to cigarette smoke (CS), and viral infections trigger acute exacerbation of COPD (AECOPD). Isoforskolin (ISOF) is a bioactive component from the plant Coleus forskohlii, native to Yunnan in China. It has been demonstrated that ISOF has anti-inflammatory effect on acute lung injury animal models. In the present study, we investigated the efficacy and mechanism of ISOF for the prevention and treatment of AECOPD. Mice were exposed to CS for 18 weeks and then infected with influenza virus A/Puerto Rico/8/34 (H1N1). ISOF (0.5, 2 mg/kg) was intragastrically administered once a day after 8 weeks of exposure to cigarette smoke when the body weight and lung function of model mice declined significantly. The viral load, pulmonary function, lung morphology, Th17 cells, and inflammatory cytokines in lung tissues were evaluated. The expression of nuclear factor κB (NF-κB) and NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome pathways were detected. The results showed that ISOF treatment reduced the viral load in the lung homogenate, decreased the lung index of model mice, and lung pathological injuries were alleviated. ISOF also improved the pulmonary function with increased FEV0.1/FVC and decreased Rn and Rrs. The levels of inflammatory mediators (TNF-α, IL-1ß, IL-6, IL-17A, MCP-1, MIG, IP-10, and CRP) in the lung homogenate were reduced after ISOF treatment. ISOF decreased the proportion of Th17 cells in the lung tissues by the flow cytometry test, and the protein expression levels of RORγt and p-STAT3 were also decreased. Furthermore, ISOF significantly inhibited the activation of NF-κB signaling and NLRP3 inflammasome in the lung tissues of model mice. In conclusion, ISOF alleviates AECOPD by improving pulmonary function and attenuating inflammation via the downregulation of proinflammatory cytokines, Th17/IL-17 A, and NF-κB/NLRP3 pathways.

12.
PeerJ ; 9: e11873, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34395097

RESUMO

Carbon distribution in plants and ecological stoichiometry in soils are important indicators of element cycling and ecosystem stability. In this study, five forest ages, young forest (YF), middle-aged forest (MAF), near-mature forest (NMF), mature forest (MF), and over-mature forest (OMF) in a Pinus tabuliformis plantation were chosen to illustrate interactions among the C: N: P stoichiometry in soils and carbon distribution in plants, in the mountainous area of eastern Liaoning, China. Carbon content was highest in the leaves of MAF (505.90 g⋅kg-1) and NMF (509.00 g⋅kg-1) and the trunks of YF (503.72 g⋅kg-1), MF (509.73 g⋅kg-1), and OMF (504.90 g⋅kg-1), and was lowest in the branches over the entire life cycle of the aboveground components (335.00 g⋅kg-1). The carbon content of the fine roots decreased with soil layer depth. In YF, MAF, and NMF carbon content of fine roots at 0.5 m was always higher than that of fine roots at 1 m; however, it was the opposite in MF and OMF. The carbon content of the leaves changed with forest age; however, carbon content of branches, trunks and fine roots did not change significantly. Soil total carbon (TC), total nitrogen (TN), total phosphorus (TP), and available phosphorus (AP) content was highest in the OMF. Soil TC, TN and AP content, and TC: TN, TC: TP and TN: TP ratio decreased with increasing soil depth. Soil TC, TN, and TP content had a significant effect on the carbon content of fine roots (p < 0.05). The leaf carbon content and soil element content changed obviously with forest age, and the soil TN, TP and AP increased, which might reduce the carbon content allocation of fine roots.

13.
Int J Nurs Stud ; 122: 104037, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391027

RESUMO

BACKGROUND: Asthma is a common chronic condition amongst children. Poor adherence to asthma medications can increase asthma exacerbations, absence from school, healthcare utilisation and costs and decrease quality of life. Emerging evidence suggests the use of electronic adherence monitoring devices in improving children's adherence to medications. OBJECTIVES: This study aimed to evaluate the effectiveness of electronic adherence monitoring devices in improving inhaler adherence amongst children with asthma. DESIGN: This study is a systematic review and meta-analysis. DATA SOURCES: A systematic search using Cochrane Library, PubMed, Embase, CINAHL, Web of Science, Scopus and ProQuest Dissertations and Theses from inception up to April 6, 2021, was conducted. REVIEW METHODS: Randomised controlled trials evaluating the use of electronic adherence monitoring devices amongst children and published in English were included. The outcomes were inhaler adherence, asthma exacerbation, lung function, asthma control and accessibility. The overall effect was measured using Hedges' g and determined using Z-statistics at a significance level of p < 0.05. Heterogeneity was assessed using χ2 and I² statistics. The individual and overall quality of evidence was assessed. Sensitivity and subgroup analyses were conducted. Narrative synthesis of outcomes was performed when meta-analysis could not be conducted on the data. RESULTS: A total of 13,429 records were identified, and 10 randomised controlled trials in 11 articles amongst 1123 participants were included in the meta-analysis. Meta-analysis revealed that the electronic adherence monitoring device group was 1.50 times more likely to adhere to inhalers compared with the control group with medium-to-large effect size (g = 0.64). A series of subgroup analyses showed that no significant subgroup differences for inhaler adherence were found amongst different populations, comparator, setting, duration of the monitoring period, reminder, and feedback functions of the electronic adherence monitoring devices. Children found the devices as user friendly with high accessibility scores. However, no significant differences were observed between the intervention and control groups for asthma exacerbations, lung function and asthma control. CONCLUSIONS: The findings from this study suggested that electronic adherence monitoring devices could improve inhaler adherence. Future devices should contain actuation and inhalation functions that can help to confirm actual inhalation amongst children with asthma. The overall evidence of outcomes ranged from very low to high. Furthermore, future large-scale trials were recommended before clinical implementations.


Assuntos
Asma , Adesão à Medicação , Asma/tratamento farmacológico , Criança , Eletrônica , Humanos , Nebulizadores e Vaporizadores , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
14.
Environ Sci Technol ; 55(17): 11511-11520, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34374533

RESUMO

Household consumption carbon footprint and inequality reductions are vital for a sustainable society, especially for rural areas. This study, focusing on rural China, one of the fastest growing economies with a massive population, explored the carbon footprint and inequality of household consumption using the latest micro household survey data of 2018 linked to environmental extended input--output analysis. The results show that in 2018 in rural China, the average household carbon footprint is 2.46 tons CO2-eq per capita, which is around one-third of China's average footprint, indicating the large potential for further growth. Housing (45.32%), transportation (20.45%), and food (19.62%) are the dominant contributors to the carbon footprint. Meanwhile, great inequality, with a Gini coefficient of 0.488, among rural households is observed, which is largely due to differences in type of house built or purchased (explaining 24.44% of the variation), heating (18.10%), car purchase (12.44%), and petrol consumption (12.44%). Provinces, average education, and nonfarm income are among the important factors influencing the inequality. In the process of urbanization and rural revitalization, there is a high possibility that the household carbon footprint continues to increase, maintaining high levels of inequality. The current energy transition toward less carbon-intensive fuels in rural China is likely to dampen the growth rates of carbon footprints and potentially decrease inequality. Carbon intensity decrease could significantly reduce carbon footprints, but increase inequality. More comprehensive measures to reduce carbon footprint and inequality are needed, including transitioning to clean energy, poverty alleviation, reduction of income inequality, and better health care coverage.


Assuntos
Pegada de Carbono , Urbanização , China , Características da Família , Humanos , Renda , População Rural
15.
Small ; 17(38): e2102915, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34365725

RESUMO

Materials with alloying reactions have significant potential as electrodes for lithium-ion batteries (LIBs) due to its high theoretical capacity and appropriate lithiation potentials. Nonetheless, their cycling performance is inferior due to violent volume expansion and severe pulverization of active materials. Herein, solid solution of Bi0.5 Sb0.5 encapsulated with carbon is discovered to enable consecutive alloying reactions with manageable volume change, suitable for developing LIBs with high capacity and robust cyclability. A Sb-rich shell and Bi-rich core structure is formed in cycling since the alloying reaction between Sb and Li occurs first, followed by the alloying reaction between Bi and Li. Such a consecutive alloying reaction obeying the thermodynamic path is experimentally realized by the carbon capsulation, which acts as a protecting solid layer to avoid polarized reactions occurred when exposed directly to liquid electrolyte. The LIBs using Bi0.5 Sb0.5 @carbon run on the consecutive alloying reactions exhibits high capacity, prolonged lifespan (489.4 mAh g-1 after 2000 cycles at 1 A g-1 ) and fast kinetic, while those using bare Bi0.5 Sb0.5 suffer from worsened kinetic and thus a poor cycling performance owning to the polarized reactions. The work paves a way of developing alloy electrodes for alkaline-ion rechargeable batteries with potential industry applications.

16.
Oncol Lett ; 22(4): 690, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34457045

RESUMO

Sulforaphane and sulforaphene are isothiocyanate compounds derived from cruciferous vegetables that have demonstrated antiproliferative properties against colon cancer. However, the underlying mechanism of action of these two compounds has yet to be elucidated. The aim of the present study was to examine the effects of sulforaphane and sulforaphene on colon cancer using next-generation sequencing (NGS). The SW480 colon cancer cell line was cultured with 25 µmol/l sulforaphane or sulforaphene. Total RNA was extracted from the cells following 48 h of incubation with these compounds, and NGS was performed. Pearson's correlation and principal component analyses were performed on the NGS data in order to determine sample homogeneity followed by hierarchical clustering, chromosomal location, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A total of 873 probes in the sulforaphene group were differentially expressed compared with the control group. Similarly, 959 probes in the sulforaphane group were differentially expressed compared with the control group. The differentially expressed genes were dispersed on the chromosomes, across 22 pairs of autosomes, as well as the X and Y chromosomes. GO and KEGG analyses demonstrated that both drugs affected the 'p53 signaling pathway', 'MAPK signaling pathway', 'FOXO signaling pathway' and 'estrogen signaling pathway', while 'Wnt signaling pathway' was enriched in the sulforaphane group, and 'ubiquitin mediated proteolysis' and 'estrogen signaling pathway' in the sulforaphene group. Thus, sulforaphane and sulforaphene exhibited similar biological activities on colon cancer cells. Sulforaphane and sulforaphene may be associated with Wnt and estrogen signaling, respectively.

17.
Water Res ; 202: 117440, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304072

RESUMO

The influence of biochar (BC) on anerobic digestion (AD) of organic wastes have been widely studied. However, the effect of BC on rate-limiting step during AD of lignocellulosic waste, i.e. the hydrolysis and acidogenesis step, is rarely studied and the underlying mechanisms have not been investigated. In this study, the benefits of BC with respect to dark fermentative hydrogen production were explored in a fermentation system by a heat-shocked consortium from sewage sludge (SS) with pretreated sugarcane bagasse (PSCB) as carbon source. The results showed that biochar boosted biohydrogen production by 317.1% through stimulating bacterial growth, improving critical enzymatic activities, manipulating the ratio of NADH/NAD+ and enhancing electron transfer efficiency of fermentation system. Furthermore, cellulolytic Lachnospiraceae was efficiently enriched and electroactive bacteria were selectively colonized and the ecological niche was formed on the surface of biochar. Synergistic effect between functional bacteria and extracellular electron transfer (EET) in electroactive bacteria were assumed to be established and maintained by biochar amendment. This study shed light on the underlying mechanisms of improved performance of biohydrogen production from lignocellulosic waste during mesophilic dark fermentation by BC supplementation.


Assuntos
Saccharum , Bactérias , Celulose , Carvão Vegetal , Elétrons , Fermentação , Hidrogênio
18.
Front Immunol ; 12: 622563, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220795

RESUMO

Purpose: To identify CD8+ T cell-related factors and the co-expression network in melanoma and illustrate the interactions among CD8+ T cell-related genes in the melanoma tumor microenvironment. Method: We obtained melanoma and paracancerous tissue mRNA matrices from TCGA-SKCM and GSE65904. The CIBERSORT algorithm was used to assess CD8+ T cell proportions, and the "estimate" package was used to assess melanoma tumor microenvironment purity. Weighted gene co-expression network analysis was used to identify the most related co-expression modules in TCGA-SKCM and GSE65904. Subsequently, a co-expression network was built based on the joint results in the two cohorts. Subsequently, we identified the core genes of the two most relevant modules of CD8+T lymphocytes according to the module correlation, and constructed the signature using ssGSEA. Later, we compared the signature with the existing classical pathways and gene sets, and confirmed the important prognostic significance of the signature in this paper. Results: Nine co-expressed genes were identified as CD8+ T cell-related genes enriched in the cellular response to interferon-gamma process and antigen processing and presentation of peptide antigen. In the low expression level group, inflammation and immune responses were weaker. Single-cell sequencing and immunohistochemistry indicated that these nine genes were highly expressed in CD8+ T cells group. Conclusion: We identified nine-gene signature, and the signature is considered as the biomarker for T lymphocyte response and clinical response to immune checkpoint inhibitors for melanoma.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/genética , Neoplasias Cutâneas/genética , Biomarcadores Farmacológicos , Movimento Celular , Conjuntos de Dados como Assunto , Redes Reguladoras de Genes , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Melanoma/tratamento farmacológico , Prognóstico , Análise de Célula Única , Neoplasias Cutâneas/tratamento farmacológico , Transcriptoma , Microambiente Tumoral
19.
J Ethnopharmacol ; 279: 114367, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34174375

RESUMO

BACKGROUND: Although the rapid emergence of coronavirus disease 2019 (COVID-19) poses a considerable threat to global public health, no specific treatment is available for COVID-19. ReDuNing injection (RDN) is a traditional Chinese medicine known to exert antibacterial, antiviral, antipyretic, and anti-inflammatory effects. In addition, RDN has been recommended in the diagnosis and treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-associated pneumonia by the National Health Council and the National Administration of Chinese Medicine. However, there is no information regarding its efficacy against COVID-19. AIM OF STUDY: This study was designed to determine the clinical efficacy of RDN in patients with COVID-19 and characterize its antiviral activity against SARS-CoV-2 in vitro. MATERIALS AND METHODS: A total of 50 adults with COVID-19 were included in this study, and the primary endpoint was recovery from clinical symptoms following 14 days of treatment. General improvements were defined as the disappearance of the major symptoms of infection including fever, fatigue, and cough. The secondary endpoints included the proportion of patients who achieved clinical symptom amelioration on days 7 and 10, time to clinical recovery, time to a negative nucleic acid test result, duration of hospitalization, and time to defervescence. Plaque reduction and cytopathic effect assays were also performed in vitro, and reverse-transcription quantitative PCR was performed to evaluate the expression of inflammatory cytokines (TNF-α, IP-10, MCP-1, IL-6, IFN-α, IFN-γ, IL-2 and CCL-5) during SARS-CoV-2 infection. RESULTS: The RDN group exhibited a shorter median time for the resolution of clinical symptoms (120 vs. 220 h, P < 0.0001), less time to a negative PCR test result (215 vs. 310 h, P = 0.0017), shorter hospitalization (14.8 vs. 18.5 days, P = 0.0002), and lower timeframe for defervescence (24.5 vs. 75 h, P = 0.0001) than the control group. In addition, time to improved imaging was also shorter in the RDN group than in the control group (6 vs.8.9 days, P = 0.0273); symptom resolution rates were higher in the RDN group than in the control group at 7 (96.30% vs. 39.13%, P < 0.0001) and 10 days (96.30% vs. 56.52%, P = 0.0008). No allergic reactions or anaphylactic responses were reported in this trial. RDN markedly inhibited SARS-CoV-2 proliferation and viral plaque formation in vitro. In addition, RDN significantly reduced inflammatory cytokine production in infected cells. CONCLUSIONS: RDN relieves clinical symptoms in patients with COVID-19 and reduces SARS-CoV-2 infection by regulating inflammatory cytokine-related disorders, suggestion that this medication might be a safe and effective treatment for COVID-19.


Assuntos
COVID-19 , Citocinas/análise , Medicamentos de Ervas Chinesas , SARS-CoV-2 , Antivirais/administração & dosagem , Antivirais/efeitos adversos , COVID-19/tratamento farmacológico , COVID-19/epidemiologia , COVID-19/imunologia , Teste de Ácido Nucleico para COVID-19/métodos , Linhagem Celular , China/epidemiologia , Testes Imunológicos de Citotoxicidade/métodos , Monitoramento de Medicamentos/métodos , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/isolamento & purificação , Avaliação de Sintomas/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...