Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
1.
Nat Commun ; 12(1): 1291, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33637743

RESUMO

Self-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m‒3, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80-100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.

2.
Nat Commun ; 12(1): 961, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574281

RESUMO

The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.


Assuntos
/virologia , Sistemas CRISPR-Cas , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno , Internalização do Vírus , Células A549 , /metabolismo , Animais , Chlorocebus aethiops , Modelos Animais de Doenças , Endossomos/virologia , Células HeLa , Humanos , Mesocricetus , Serina Endopeptidases , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero
3.
J Am Chem Soc ; 143(3): 1296-1300, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33433203

RESUMO

Oligonucleotide-based materials such as spherical nucleic acid (SNA) have been reported to exhibit improved penetration through the epidermis and the dermis of the skin upon topical application. Herein, we report a self-assembled, skin-depigmenting SNA structure, which is based upon a bifunctional oligonucleotide amphiphile containing an antisense oligonucleotide and a tyrosinase inhibitor prodrug. The two components work synergistically to increase oligonucleotide cellular uptake, enhance drug solubility, and promote skin penetration. The particles were shown to reduce melanin content in B16F10 melanoma cells and exhibited a potent antimelanogenic effect in an ultraviolet B-induced hyperpigmentation mouse model.

4.
Cancer Treat Res Commun ; 26: 100271, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33341453

RESUMO

Worldwide prevalence of esophageal adenocarcinomas with high rates of mortality coupled with increased mutations in esophageal cells warrants investigation to understand deregulation of cell signaling pathways leading to cancer. To this end, the current study was undertaken to unravel the cell death signatures using the model human esophageal adenocarcinoma cell line-OE33. The strategy involved targeting the key epigenetic modulator SIRT1, a histone deacetylase by a small molecule inhibitor - sirtinol. Sirtinol induced a dose-dependent inhibition of cell viability under both normoxic and hypoxic conditions with long term impact on proliferation as shown by clonogenic assays. Signature apoptotic signaling pathways including caspase activation and decreased Bcl-2 were observed. Proteomic analysis highlighted an array of entities affected including molecules involved in replication, transcription, protein synthesis, cell division control, stress-related proteins, spliceosome components, protein processing and cell detoxification/degradation systems. Importantly, the stoichiometry of the fold changes of the affected proteins per se could govern the cell death phenotype by sirtinol. Sirtinol could also potentially curb resistant and recurrent tumors that reside in hypoxic environments. Overall, in addition to unraveling the cellular, molecular and proteomics basis of SIRT1 inhibition, the findings open up avenues for designing novel strategies against esophageal adenocarcinoma.

5.
Cancer Cell Int ; 20(1): 590, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298069

RESUMO

BACKGROUND: Although advanced non-squamous non-small cell lung cancer (NSCLC) patients have significantly better survival outcomes after pemetrexed based treatment, a subset of patients still show intrinsic resistance and progress rapidly. Therefore we aimed to use a blood-based protein signature (VeriStrat, VS) to analyze whether VS could identify the subset of patients who had poor efficacy on pemetrexed therapy. METHODS: This study retrospectively analysed 72 advanced lung adenocarcinoma patients who received first-line pemetrexed/platinum or combined with bevacizumab treatment. RESULTS: Plasma samples from these patients were analysed using VS and classified into the Good (VS-G) or Poor (VS-P) group. The relationship between efficacy and VS status was further investigated. Of the 72 patients included in this study, 35 (48.6%) were treated with pemetrexed plus platinum and 37 (51.4%) were treated with pemetrexed/platinum combined with bevacizumab. Among all patients, 60 (83.3%) and 12 (16.7%) patients were classified as VS-G and VS-P, respectively. VS-G patients had significantly better median progression-free survival (PFS) (Unreached vs. 4.2 months; P < 0.001) than VS-P patients. In addition, the partial response (PR) rate was higher in the VS-G group than that in the VS-P group (46.7% vs. 25.0%, P = 0.212). Subgroup analysis showed that PFS was also significantly longer in the VS-G group than that in the VS-P group regardless of whether patients received chemotherapy alone or chemotherapy plus bevacizumab. CONCLUSIONS: Our study indicated that VS might be considered as a novel and valid method to predict the efficacy of pemetrexed-based therapy and identify a subset of advanced lung adenocarcinoma patients who had intrinsic resistance to pemetrexed based regimens. However, larger sample studies are still needed to further confirm this result.

6.
Cancer ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33294978

RESUMO

BACKGROUND: Mounting evidence suggests disproportionate coronavirus disease 2019 (COVID-19) hospitalizations and deaths because of racial disparities. The association of race in a cohort of gynecologic oncology patients with severe acute respiratory syndrome-coronavirus 2 infection is unknown. METHODS: Data were abstracted from gynecologic oncology patients with COVID-19 infection among 8 New York City area hospital systems. A multivariable mixed-effects logistic regression model accounting for county clustering was used to analyze COVID-19-related hospitalization and mortality. RESULTS: Of 193 patients who had gynecologic cancer and COVID-19, 67 (34.7%) were Black, and 126 (65.3%) were non-Black. Black patients were more likely to require hospitalization compared with non-Black patients (71.6% [48 of 67] vs 46.0% [58 of 126]; P = .001). Of 34 (17.6%) patients who died from COVID-19, 14 (41.2%) were Black. Among those who were hospitalized, compared with non-Black patients, Black patients were more likely to: have ≥3 comorbidities (81.1% [30 of 37] vs 59.2% [29 of 49]; P = .05), to reside in Brooklyn (81.0% [17 of 21] vs 44.4% [12 of 27]; P = .02), to live with family (69.4% [25 of 36] vs 41.6% [37 of 89]; P = .009), and to have public insurance (79.6% [39 of 49] vs 53.4% [39 of 73]; P = .006). In multivariable analysis, among patients aged <65 years, Black patients were more likely to require hospitalization compared with non-Black patients (odds ratio, 4.87; 95% CI, 1.82-12.99; P = .002). CONCLUSIONS: Although Black patients represented only one-third of patients with gynecologic cancer, they accounted for disproportionate rates of hospitalization (>45%) and death (>40%) because of COVID-19 infection; younger Black patients had a nearly 5-fold greater risk of hospitalization. Efforts to understand and improve these disparities in COVID-19 outcomes among Black patients are critical.

7.
Sci Bull (Beijing) ; 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33318880

RESUMO

The SARS-CoV-2 infection is spreading rapidly worldwide. Efficacious antiviral therapeutics against SARS-CoV-2 is urgently needed. Here, we discovered that protoporphyrin IX (PpIX) and verteporfin, two FDA-approved drugs, completely inhibited the cytopathic effect produced by SARS-CoV-2 infection at 1.25 µmol/Land 0.31 µmol/L respectively, and their EC50 values of reduction of viral RNA were at nanomolar concentrations. The selectivity indices of PpIX and verteporfin were 952.74 and 368.93, respectively, suggesting broad margin of safety. Importantly, PpIX and verteporfin prevented SARS-CoV-2 infection in mice adenovirally transduced with human ACE2. The compounds, sharing a porphyrin ring structure, were shown to bind viral receptor ACE2 and interfere with the interaction between ACE2 and the receptor-binding domain of viral S protein. Our study suggests that PpIX and verteporfin are potent antiviral agents against SARS-CoV-2 infection and sheds new light on developing novel chemoprophylaxis and chemotherapy against SARS-CoV-2.

8.
Artigo em Inglês | MEDLINE | ID: mdl-33372329

RESUMO

Metallic bismuth has drawn attention as a promising alloying anode for advanced potassium ion batteries (PIBs). However, serious volume expansion/electrode pulverization and sluggish kinetics always lead to its inferior cycling and rate properties for practical applications. Therefore, advanced Bi-based anodes via structural/compositional optimization and sur-/interface design are needed. Herein, we develop a bottom-up avenue to fabricate nanoscale Bi encapsulated in a 3D N-doped carbon nanocages (Bi@N-CNCs) framework with a void space by using a novel Bi-based metal-organic framework as the precursor. With elaborate regulation in annealing temperatures, the optimized Bi@N-CNCs electrode exhibits large reversible capacities and long-duration cyclic stability at high rates when evaluated as competitive anodes for PIBs. Insights into the intrinsic K+ -storage processes of the Bi@N-CNCs anode are put forward from comprehensive in situ characterizations.

10.
J Hazard Mater ; : 124378, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33139105

RESUMO

Experimental studies suggested per- and polyfluoroalkyl substances (PFASs) may disrupt estrogens in animals, however, the epidemiological evidence on the associations of PFASs with estrogens is sparse. We investigated the associations of legacy PFASs and their alternatives, including F-53B, the perfluorooctane sulfonate (PFOS) replacement that is specifically and commonly used in China, with estrogen concentrations in newborns. We quantified six PFASs and three estrogens in the cord sera of 942 newborns from a birth cohort in Wuhan, China, between 2013 and 2014. After adjusting for confounders and correcting for multiple comparisons, we observed that both legacy PFASs and their alternatives were associated with higher serum levels of estradiol (E2). Some of the PFASs were associated with increasing levels of estrone (E1) and estriol (E3). Analysis of PFASs in mixture using weighted quantile sum regressions showed that F-53B contributed 20.1% and 48.5% to the associations between PFASs and E1 and E2, respectively. This study provided epidemiological data on the associations between common PFAS exposures and estrogens in newborns. Additional toxicology studies are needed to fully understand the effects of PFASs on estrogens and the mechanisms.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33096741

RESUMO

Since environmental problems are becoming increasingly prominent, macro policies and social development have placed higher requirements on manufacturing enterprises to promote green transformation and upgrading (GTU) in China. Considering that different manufacturing enterprises choose different green technology innovation levels for GTU under environmental regulation, a game model between manufacturing enterprises and the government is constructed. The relationship between the green technology innovation level (GTIL) and the environmental regulation intensity is analyzed. Through numerical examples, the influences of environmental regulation and consumer preference on system decisions are further examined. Moreover, an econometric model is constructed to explore the influence that the environmental regulation exerts on the GTIL using panel data from the Chinese manufacturing industry. Our results show that the increase in environmental regulation intensity contributes to improving GTIL and promoting the GTU of manufacturing enterprises. Furthermore, as the environmental regulation is enhanced, the sales price decreases, benefiting consumers. Consumers' preference for high-GTIL products is conducive to GTU under environmental regulation. Empirical analysis shows that there is a U-shaped relationship between environmental regulation and the GTIL. Only when the intensity reaches a threshold can the environmental regulation be beneficial to improve the GTIL and promote the GTU of Chinese manufacturing enterprises.

12.
Gynecol Oncol ; 159(3): 618-622, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33019984

RESUMO

OBJECTIVE: Elevated inflammatory markers are predictive of COVID-19 infection severity and mortality. It is unclear if these markers are associated with severe infection in patients with cancer due to underlying tumor related inflammation. We sought to further understand the inflammatory response related to COVID-19 infection in patients with gynecologic cancer. METHODS: Patients with a history of gynecologic cancer hospitalized for COVID-19 infection with available laboratory data were identified. Admission laboratory values and clinical outcomes were abstracted from electronic medical records. Severe infection was defined as infection requiring ICU admission, mechanical ventilation, or resulting in death. RESULTS: 86 patients with gynecologic cancer were hospitalized with COVID-19 infection with a median age of 68.5 years (interquartile range (IQR), 59.0-74.8). Of the 86 patients, 29 (33.7%) patients required ICU admission and 25 (29.1%) patients died of COVID-19 complications. Fifty (58.1%) patients had active cancer and 36 (41.9%) were in remission. Patients with severe infection had significantly higher ferritin (median 1163.0 vs 624.0 ng/mL, p < 0.01), procalcitonin (median 0.8 vs 0.2 ng/mL, p < 0.01), and C-reactive protein (median 142.0 vs 62.3 mg/L, p = 0.02) levels compared to those with moderate infection. White blood cell count, lactate, and creatinine were also associated with severe infection. D-dimer levels were not significantly associated with severe infection (p = 0.20). CONCLUSIONS: The inflammatory markers ferritin, procalcitonin, and CRP were associated with COVID-19 severity in gynecologic cancer patients and may be used as prognostic markers at the time of admission.

13.
Onco Targets Ther ; 13: 10245-10256, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33116605

RESUMO

Purpose: Cervical cancer is the second most prevalent female malignance, and human papillomavirus (HPV) infection is the main pathogenic factor of cervical cancer. Emerging evidence has revealed that a number of long non-coding RNAs (lncRNAs) play critical roles in the tumorigenesis and progression of cervical cancer. The aim of this study was to further investigate the precise role of lncRNA LINC00511 in HPV-negative and HPV-positive cervical cancer cells and explore the potential regulatory mechanism. Methods: The expression of LINC00511 in cervical cancer and cell lines was examined by RT-PCR. Fluorescence in situ hybridization analysis (FISH) assay was performed to detect the localization of LINC00511 in cervical cancer cells. Loss-of-function experiments of LINC00511 by siRNA interference were performed to assess its effects on HPV-negative and HPV-positive cervical cancer cells. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were used to identify the target of LINC00511. Relative expression of related proteins was detected using Western blot. Results: Herein, the results showed that LINC00511 was significantly up-regulated in cervical cancer and cell lines and mainly distributed in the cytoplasm of cervical cancer cells. Loss-of-function experiments indicated that silencing of LINC00511 inhibited the proliferation and invasion of both HPV-negative and HPV-positive cervical cancer cells, as well as promoted apoptosis by regulating the Bcl-2/Bax axis and Caspase 3 activation. Bioinformatic analysis, dual-luciferase reporter, and RIP assays showed that LINC00511 was a target of miR-324-5p, while DRAM1 was a direct target of miR-324-5p. The expression of miR-324-5p was down-regulated in cervical cancer, while the expression of DRAM1 was up-regulated. Moreover, the expression of LINC00511 was negatively correlated with miR-324-5p expression in cervical cancer tissues and positively correlated with DRAM1. Further, DRAM1 overexpression promoted both HPV-negative and HPV-positive cervical cancer cell proliferation and invasion, which could be reversed by miR-324-5p mimics or si-LINC00511. Conclusion: Collectively, these results suggest that LINC00511 functions as a competing endogenous RNA (ceRNA) to regulate the miR-324-5p/DRAM1 axis, leading to HPV-negative and HPV-positive cervical cancer aggravation.

14.
Sci Rep ; 10(1): 16725, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33028842

RESUMO

Lubricin is an important boundary lubricant and chondroprotective glycoprotein in synovial fluid. Both increased and decreased synovial fluid lubricin concentrations have been reported in experimental post-traumatic osteoarthritis (PTOA) animal models and in naturally occurring joint injuries in humans and animals, with no consensus about how lubricin is altered in different species or injury types. Increased synovial fluid lubricin has been observed following intra-articular fracture in humans and horses and in human late-stage osteoarthritis; however, it is unknown how synovial lubricin is affected by knee-destabilizing injuries in large animals. Spontaneous rupture of cranial cruciate ligament (RCCL), the anterior cruciate ligament equivalent in quadrupeds, is a common injury in dogs often accompanied by OA. Here, clinical records, radiographs, and synovial fluid samples from 30 dogs that sustained RCCL and 9 clinically healthy dogs were analyzed. Synovial fluid lubricin concentrations were nearly 16-fold greater in RCCL joints as compared to control joints, while IL-2, IL-6, IL-8, and TNF-α concentrations did not differ between groups. Synovial fluid lubricin concentrations were correlated with the presence of radiographic OA and were elevated in three animals sustaining RCCL injury prior to the radiographic manifestation of OA, indicating that lubricin may be a potential biomarker for early joint injury.

15.
J Hematol Oncol ; 13(1): 120, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32887634

RESUMO

BACKGROUND: Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear. METHODS: Using platelets from healthy volunteers, non-COVID-19 and COVID-19 patients, as well as wild-type and hACE2 transgenic mice, we evaluated the changes in platelet and coagulation parameters in COVID-19 patients. We investigated ACE2 expression and direct effect of SARS-CoV-2 virus on platelets by RT-PCR, flow cytometry, Western blot, immunofluorescence, and platelet functional studies in vitro, FeCl3-induced thrombus formation in vivo, and thrombus formation under flow conditions ex vivo. RESULTS: We demonstrated that COVID-19 patients present with increased mean platelet volume (MPV) and platelet hyperactivity, which correlated with a decrease in overall platelet count. Detectable SARS-CoV-2 RNA in the blood stream was associated with platelet hyperactivity in critically ill patients. Platelets expressed ACE2, a host cell receptor for SARS-CoV-2, and TMPRSS2, a serine protease for Spike protein priming. SARS-CoV-2 and its Spike protein directly enhanced platelet activation such as platelet aggregation, PAC-1 binding, CD62P expression, α granule secretion, dense granule release, platelet spreading, and clot retraction in vitro, and thereby Spike protein enhanced thrombosis formation in wild-type mice transfused with hACE2 transgenic platelets, but this was not observed in animals transfused with wild-type platelets in vivo. Further, we provided evidence suggesting that the MAPK pathway, downstream of ACE2, mediates the potentiating role of SARS-CoV-2 on platelet activation, and that platelet ACE2 expression decreases following SARS-COV-2 stimulation. SARS-CoV-2 and its Spike protein directly stimulated platelets to facilitate the release of coagulation factors, the secretion of inflammatory factors, and the formation of leukocyte-platelet aggregates. Recombinant human ACE2 protein and anti-Spike monoclonal antibody could inhibit SARS-CoV-2 Spike protein-induced platelet activation. CONCLUSIONS: Our findings uncovered a novel function of SARS-CoV-2 on platelet activation via binding of Spike to ACE2. SARS-CoV-2-induced platelet activation may participate in thrombus formation and inflammatory responses in COVID-19 patients.


Assuntos
Betacoronavirus/metabolismo , Plaquetas/metabolismo , Infecções por Coronavirus/metabolismo , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/metabolismo , Trombose/metabolismo , Adulto , Idoso , Animais , Betacoronavirus/genética , Células CACO-2 , Infecções por Coronavirus/virologia , Feminino , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Células PC-3 , Pandemias , Peptidil Dipeptidase A/genética , Agregação Plaquetária/imunologia , Contagem de Plaquetas , Pneumonia Viral/virologia , RNA Viral/sangue , Serina Endopeptidases/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo , Trombose/virologia
16.
ACS Appl Mater Interfaces ; 12(41): 45830-45837, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32936615

RESUMO

Herein, we report a novel strategy to enhance the antisense activity and the pharmacokinetics of therapeutic oligonucleotides. Through the DNA hybridization chain reaction, DNA hairpins modified with poly(ethylene glycol) (PEG) form a bottlebrush architecture consisting of a double-stranded DNA backbone, PEG side chains, and antisense overhangs. The assembled structure exhibits high PEG density on the surface, which suppresses unwanted interactions between the DNA and proteins (e.g., enzymatic degradation) while allowing the antisense overhangs to hybridize with the mRNA target and thereby deplete target protein expression. We show that these PEGylated bottlebrushes targeting oncogenic KRAS can achieve much higher antisense efficacy compared with unassembled hairpins with or without PEGylation and can inhibit the proliferation of lung cancer cells bearing the G12C mutant KRAS gene. Meanwhile, these structures exhibit elevated blood retention times in vivo due to the biological stealth properties of PEG and the high molecular weight of the overall assembly. Collectively, this self-assembly approach bears the characteristics of a simple, safe, yet highly translatable strategy to improve the biopharmaceutical properties of therapeutic oligonucleotides.

17.
Life Sci ; 261: 118433, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32950572

RESUMO

AIMS: Sinomenine (SIN) is clinically used as an anti-rheumatic drug. However, the metabolic and pharmacological mechanisms of SIN combined with its metabolites are unclear. This study aims to explore the cyclic metabolic mechanism of SIN, the anti-inflammation effects of SIN and its major metabolites (N-demethylsinomenine (DS) and sinomenine-N-oxide (SNO)), and the oxidation property of SNO. MATERIALS AND METHODS: SIN was administrated to rats via gavage. Qishe pills (a SIN-containing drug) were orally administrated to humans. The bio-samples were collected to identify SIN's metabolites. Enzymatic and non-enzymatic incubations were used to reveal SIN's metabolic mechanism. Impacts of SIN, SNO and DS on the inflammation-related cytokine's levels and nuclear translocation of NF-κB were evaluated in LPS-induced Raw264.7 cells. ROS induced by SNO (10 µM) was also assessed. KEY FINDINGS: CYP3A4 and ROS predominantly mediated the formation of SNO, and CYP3A4 and CYP2C19 primarily mediated the formation of DS. Noteworthily, SNO underwent N-oxide reduction both enzymatically, by xanthine oxidase (XOD), and non-enzymatically, by ferrous ion and heme moiety. The levels of IL-6 and TNF-α and nuclear translocation of NF-κB were ameliorated after pretreatment of SIN in LPS-induced Raw264.7 cells, while limited attenuations were observed after pretreatment of DS (SNO) even at 200 µM. In contrast, SNO induced ROS production. SIGNIFICANCE: This study elucidated that SIN underwent both enzymatic and non-enzymatic cyclic metabolism and worked as the predominant anti-inflammation compound, while SNO induced ROS production, suggesting more studies of SIN combined with SNO and DS are necessary in case of DDI and potential toxicities.


Assuntos
Anti-Inflamatórios/farmacologia , Inflamação/tratamento farmacológico , Morfinanos/farmacologia , Animais , Anti-Inflamatórios/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Morfinanos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley
18.
Environ Health ; 19(1): 96, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32912175

RESUMO

BACKGROUND: Statistical methods to study the joint effects of environmental factors are of great importance to understand the impact of correlated exposures that may act synergistically or antagonistically on health outcomes. This study proposes a family of statistical models under a unified partial-linear single-index (PLSI) modeling framework, to assess the joint effects of environmental factors for continuous, categorical, time-to-event, and longitudinal outcomes. All PLSI models consist of a linear combination of exposures into a single index for practical interpretability of relative direction and importance, and a nonparametric link function for modeling flexibility. METHODS: We presented PLSI linear regression and PLSI quantile regression for continuous outcome, PLSI generalized linear regression for categorical outcome, PLSI proportional hazards model for time-to-event outcome, and PLSI mixed-effects model for longitudinal outcome. These models were demonstrated using a dataset of 800 subjects from NHANES 2003-2004 survey including 8 environmental factors. Serum triglyceride concentration was analyzed as a continuous outcome and then dichotomized as a binary outcome. Simulations were conducted to demonstrate the PLSI proportional hazards model and PLSI mixed-effects model. The performance of PLSI models was compared with their counterpart parametric models. RESULTS: PLSI linear, quantile, and logistic regressions showed similar results that the 8 environmental factors had both positive and negative associations with triglycerides, with a-Tocopherol having the most positive and trans-b-carotene having the most negative association. For the time-to-event and longitudinal settings, simulations showed that PLSI models could correctly identify directions and relative importance for the 8 environmental factors. Compared with parametric models, PLSI models got similar results when the link function was close to linear, but clearly outperformed in simulations with nonlinear effects. CONCLUSIONS: We presented a unified family of PLSI models to assess the joint effects of exposures on four commonly-used types of outcomes in environmental research, and demonstrated their modeling flexibility and effectiveness, especially for studying environmental factors with mixed directional effects and/or nonlinear effects. Our study has expanded the analytical toolbox for investigating the complex effects of environmental factors. A practical contribution also included a coherent algorithm for all proposed PLSI models with R codes available.


Assuntos
Exposição Ambiental/análise , Poluentes Ambientais/análise , Triglicerídeos/sangue , Humanos , Modelos Lineares , Inquéritos Nutricionais , Estados Unidos
19.
Mol Ther ; 28(11): 2442-2457, 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-32966775

RESUMO

High plasma lactate is emerging as a critical regulator in development and progression of many human malignancies. Small RNAs derived from cleavage of mature tRNAs have been implicated in many cellular stresses, but the detailed mechanisms that respond to lactic acid (LA; acidic lactate) are not well defined. Here, using an Epstein-Barr virus (EBV)-immortalized B lymphoblastic cell line (LCL) as a model, we report that LA induces cleavage of mature tRNA at the anticodon loop, particularly production of three 5'-tRNA halves (5'-HisGUG, 5'-ValAAC, and 5'-GlyGCC), along with increased expression of RNA polymerase III and angiogenin (ANG). Of these, only the 5'-HisGUG half binds to the chromatin regulator argonaute-2 (AGO2) instead of the AGO1 protein for stability. Notably, the levels of ANG and 5'-HisGUG half expression in peripheral blood mononuclear cells from B cell lymphoma patients are tightly correlated with lactate dehydrogenase (LDH; a lactate indicator) in plasma. Silencing production of the 5'-HisGUG half by small interfering RNA or inhibition of ANG significantly reduces colony formation and growth of LA-induced tumor cells in vitro and in vivo using a murine xenograft model. Overall, our findings identify a novel molecular therapeutic target for the diagnosis and treatment of B cell lymphoma.

20.
Kidney Med ; 2(3): 297-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32734249

RESUMO

Rationale & Objectives: Recent data demonstrate that center volume is not a factor in the outcomes of adult kidney transplant recipients. This study assessed whether center volume affects graft survival in pediatric patients who received a kidney transplant. Study Design: Case-cohort study. Setting & Participants: Kidney transplantation centers, recipients younger than 18 years. Results: Data were retrieved from the Scientific Registry of Transplant Recipients for transplantations performed July 1, 2010, to June 30, 2015, and the Organ Procurement and Transplantation Network for transplantations performed January 1, 2010, to December 30, 2015. Center volume was divided into 3 groups: low (<4 per year), intermediate (4-8 per year), and high (>8 per year). The primary outcome was 3-year graft survival rate. Outcomes were reviewed in 115 centers that performed 3,762 transplantations. There were no substantive differences in sex, age, ethnicity, diagnosis, and kidney donor profile index score in the 3 transplantation center volume categories. During the 5-year period (July 1, 2010, to June 30, 2015), 3-year graft survival in centers with low, intermediate, and high volumes were 88.4%, 90.3%, and 92.1%, respectively; P = 0.02. Although outcomes for deceased donor kidney recipients were similar in the 3 volume categories, outcomes in patients who received a living kidney donation were better in the high-volume centers. Low household income was associated with poorer outcomes. However, 3-year graft survival was similar in the 3 center volume categories in high and low mean household income states. Limitations: Lack of information for complications and individual family household income of recipients. Conclusions: Transplantation outcomes are worse in pediatric patients treated at lower-volume centers. The difference was more pronounced for patients receiving living versus deceased donor kidneys. The distribution of household income in pediatric transplant recipients may also be a factor that contributes to lower 3-year graft survival in low-volume centers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...