Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.402
Filtrar
1.
Org Lett ; 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34477387

RESUMO

Two distinctive alkaloids with 6/6/6/5/6/6 fused rings, in which a previously unidentified linkage of C-12/23 generates a rigid skeleton, resulting in a new subtype of steroidal alkaloid, were isolated from Veratrum grandiflorum. Compounds 1 and 2 showed potent analgesic effects in vivo, superior to the well-known analgesic, pethidine (Dolantin), likely by inhibiting CaV2.2 voltage-gated calcium channels.

2.
BMC Cancer ; 21(1): 988, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479538

RESUMO

BACKGROUND: In clinical studies, it has been observed that esophageal cancer (EC) patient prognosis can be very different even for those patients with tumors of the same TNM stage. Tumor length has been analysed as a possible independent prognostic factor in many studies, but no unanimous conclusion has been reached. Therefore, this review used a meta-analysis to evaluate the association between tumor length and prognosis in EC patients. METHODS: A systematic search for relevant articles was performed in PubMed, Web of Science, and Embase. Hazard ratios (HRs) and 95% confidence intervals (CIs) were used as effective measures to estimate the correlation between tumor length and prognosis, including overall survival, disease-free survival, progression-free survival, disease-specific survival, and cancer-specific survival. STATA 15.0 software was used to perform the meta-analysis and the data synthesis. RESULTS: Finally, 41 articles with 28,973 patients were included in our study. The comprehensive statistical results showed that long tumors are an independent prognostic parameter associated with poor overall survival (OS) (HR = 1.30; 95% CI: 1.21-1.40, p < .001) and disease-free survival (DFS) (HR = 1.38; 95% CI: 1.18-1.61, p < .001) in EC patients. Subgroup analyses also suggested a significant correlation between long tumors and poor OS. Sensitivity analysis and publication bias evaluation confirmed the reliability and stability of the results. Similar results were obtained in the analyses of progression-free survival (PFS), disease-specific survival (DSS), and cancer-specific survival (CSS). CONCLUSION: The results of this meta-analysis showed that long tumors were related to poor OS, DFS, PFS, DSS and CSS in EC patients. Tumor length might be an important predictor of prognosis in EC patients, and it can be used as an independent staging index. Further well-designed and large-scale prospective clinical studies are needed to confirm these findings.

3.
J Colloid Interface Sci ; 607(Pt 1): 367-377, 2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34509111

RESUMO

Harmless and breathable flexible humidity sensor has important applications in continuous and real-time detection of human physiological activities. In this work, with hydrophobic poly (vinylidene fluoride) (PVDF) membrane as both the template and substrate and cetyltrimethylammonium bromide as a structure regulator, polyaniline (PANI) was unilaterally deposited on a PVDF microporous membrane to facilely fabricate a single-sided integrated flexible humidity sensor (IFHS). Such IFHS is featured with unique micro/nano structure and good air permeability. Moreover, it exhibits good humidity sensing properties at room temperature including fast response, small hysteresis and stable response even under bending deformation. The flexible sensor could realize non-contact monitoring of human respiration and speaking activities. Unilateral deposition of PANI and good breathability of IFHS avoids direct contact between PANI and human skin, thus averting harms to human and minimizing the deterioration of humidity sensing properties of PANI layer. The simple method is universal to the preparation of single-sided, integrated, breathable, nontoxic and fast response wearable humidity sensors based on PANI and hydrophobic microporous polymer membranes, offering useful references for the construction of advanced flexible sensors.

4.
Cell Mol Immunol ; 2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34522020

RESUMO

Invariant natural killer T (iNKT) cells are highly conserved innate-like T lymphocytes that originate from CD4+CD8+ double-positive (DP) thymocytes. Here, we report that serine/arginine splicing factor 1 (SRSF1) intrinsically regulates iNKT cell development by directly targeting Myb and balancing the abundance of short and long isoforms. Conditional ablation of SRSF1 in DP cells led to a substantially diminished iNKT cell pool due to defects in proliferation, survival, and TCRα rearrangement. The transition from stage 0 to stage 1 of iNKT cells was substantially blocked, and the iNKT2 subset was notably diminished in SRSF1-deficient mice. SRSF1 deficiency resulted in aberrant expression of a series of regulators that are tightly correlated with iNKT cell development and iNKT2 differentiation, including Myb, PLZF, Gata3, ICOS, and CD5. In particular, we found that SRSF1 directly binds and regulates pre-mRNA alternative splicing of Myb and that the expression of the short isoform of Myb is substantially reduced in SRSF1-deficient DP and iNKT cells. Strikingly, ectopic expression of the Myb short isoform partially rectified the defects caused by ablation of SRSF1. Furthermore, we confirmed that the SRSF1-deficient mice exhibited resistance to acute liver injury upon α-GalCer and Con A induction. Our findings thus uncovered a previously unknown role of SRSF1 as an essential post-transcriptional regulator in iNKT cell development and functional differentiation, providing new clinical insights into iNKT-correlated disease.

5.
Adv Mater ; : e2103130, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34510574

RESUMO

Precise synthesis of porous materials is essential for their applications. Self-assembly is a widely used strategy for synthesizing porous materials, but quantitative control of the assembly process still remains a great challenge. Here, a quantitative coassembly approach is developed for synthesizing resin/silica composite and its derived porous spheres. The assembly behaviors of the carbon and silica precursors are regulated without surfactants and the growth kinetics of the composite spheres are quantitatively controlled. This assembly approach enables the precise control of the size and pore structures of the derived carbon spheres. These carbon spheres provide a good platform to explore the structure-performance relationships of porous materials, and demonstrate their pore structure-dependent performance in catalytic water decontamination. This work provides a simple and robust approach for precise synthesis of porous spheres and brings insights into function-oriented design of porous materials.

6.
Artigo em Inglês | MEDLINE | ID: mdl-34514792

RESUMO

Ga2O3 is a popular material for research on solar-blind ultraviolet detectors. However, its absorption cutoff edge is 253 nm, which is not an ideal cutoff edge of 280 nm. In this work, by adjusting the ratio of In/Ga elements in the films, a high-quality (In0.11Ga0.89)2O3 film with an absorption cutoff edge of 280 nm was obtained, which owns a uniform surface and preferred orientation. On this basis, a solar-blind ultraviolet photovoltaic detector was constructed based on the Pt/(In0.11Ga0.89)2O3/n-Si heterojunction. When the device is exposed to 254 nm UV light, its open-circuit voltage (VOC) can reach 354 mV. Under 0 V bias, the device has a responsivity of 0.48 mA/W with a rise time of 0.47 s and a decay time of 0.37 s; under -7 V bias, the device achieves a responsivity of 16.96 mA/W with a rise time of 0.17 s and a decay time of 0.33 s. The spectral response characteristics of the device show that it has a selective response to solar-blind ultraviolet light (cutoff wavelength is 280 nm) with a rejection ratio (R254 nm/R310 nm), which is greater by more than two orders of magnitude. This work provides a good reference for adjusting the band gap of Ga2O3-based films and broadening their application fields.

7.
Food Funct ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34515716

RESUMO

The current study aimed to evaluate the protective activity of peptides isolated from Jinhua ham (JHP) against alcoholic liver disease (ALD) and the mechanisms by which JHP prevents against ALD. The tangential flow filtration (TFF) combined with size exclusion chromatography (SEC) and reversed-phase high performance liquid chromatography (RP-HPLC) were used to isolate the JHP. Then the hepatoprotective activity of peptides was evaluated through experiments in mice. The primary structure of the peptide with the strongest liver protective activity was Lys-Arg-Gln-Lys-Tyr-Asp (KRQKYD) and the peptide was derived from the myosin of Jinhua ham, which were both identified by LC-MS/MS. Furthermore, the mechanism of KRQKYD prevention against ALD was attributed to the fact that KRQKYD increases the abundance of Akkermansia muciniphila in the gut and decreases the abundance of Proteobacteria (especially Escherichia_Shigella). The LPS-mediated liver inflammatory cascade was reduced by protecting the intestinal barrier, increasing the tight connection of intestinal epithelial cells and reducing the level of LPS in the portal venous circulation. KRQKYD could inhibit the production of ROS by upregulating the expression of the NRF2/HO-1 antioxidant defense system and by reducing oxidative stress injury in liver cells. This study can provide a theoretical foundation for the application of JHP in the protection of liver from ALD.

8.
Nanoscale ; 13(32): 13786-13794, 2021 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-34477653

RESUMO

Removal of nitrate in wastewater is of great importance to environmental protection and humanity. However, the competitive reaction of hydrogen evolution (HER), which could occupy most active sites of the electrocatalyst, is one of the big challenges for nitrate removal. In this study, a novel zeolitic imidazolate framework-8 film engineered bismuth nanosheet electrocatalyst (ZIF-8/Bi-CC) was designed and synthesized for the electrochemical reduction of nitrate. The water contact angle and electrochemical tests demonstrated that the construction of the hydrophobic ZIF-8 film effectively weakened the competition of HER. And the nitrate removal efficiency and ammonium selectivity increased by 25.9% and 34.2% respectively after bismuth nanosheets were embedded into the ZIF-8 film. Besides, the bismuth concentration detection results indicated that the ZIF-8 film as the protective shell could effectively prevent the leaching of bismuth into the solution. More importantly, the final nitrate removal rate of ZIF-8/Bi-CC was close to 90% after 5 h when treating actual garbage fly ash wastewater, the NITRR efficiency stability and the obtained product were confirmed by five electrochemical cycles. The metal-organic framework film engineered electrocatalyst is a promising strategy for designing a new catalyst for the removal of nitrate in industrial wastewater.

9.
Artigo em Inglês | MEDLINE | ID: mdl-34467484

RESUMO

Due to their wide distribution and availability, plant leaves can be considered interesting candidates as biomonitoring substrates for the evaluation of atmospheric pollution. In addition, some species can also retain historical information, for example, related to environmental pollution, due to their leaf class age. In this study, the content of polycyclic aromatic hydrocarbons (PAHs) in Abies holophylla and Pinus tabuliformis needle samples in the function of their class age has been investigated to obtain information regarding the degradation constant for each PAH under investigation (α values ranging from 0.173 to 1.870) and to evaluate the possibility to correlate the presence of PAHs in needles with some important pollution environmental factors. Considering air pollutant variables registered in Jilin Province, interesting correlations (at 95% confidence level) have been found between coal consumption per year and anthracene contents in needles, while fluorene, phenanthrene, and anthracene results correlated with coal consumption. Furthermore, it has been demonstrated that the total PAH concentration in needles, for both species, increased with their age (from 804 to 3604 ng g-1 dry weight), showing a general tendency to accumulate these substances through years. PAH degradation rates increased instead with molecular complexity. This study could be considered a first trial to obtain historical environmental information by pine needles biomonitoring.

10.
Ultrason Imaging ; : 1617346211042526, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34470531

RESUMO

Large scale early scanning of fetuses via ultrasound imaging is widely used to alleviate the morbidity or mortality caused by congenital anomalies in fetal hearts and lungs. To reduce the intensive cost during manual recognition of organ regions, many automatic segmentation methods have been proposed. However, the existing methods still encounter multi-scale problem at a larger range of receptive fields of organs in images, resolution problem of segmentation mask, and interference problem of task-irrelevant features, obscuring the attainment of accurate segmentations. To achieve semantic segmentation with functions of (1) extracting multi-scale features from images, (2) compensating information of high resolution, and (3) eliminating the task-irrelevant features, we propose a multi-scale model with skip connection framework and attention mechanism integrated. The multi-scale feature extraction modules are incorporated with additive attention gate units for irrelevant feature elimination, through a U-Net framework with skip connections for information compensation. The performance of fetal heart and lung segmentation indicates the superiority of our method over the existing deep learning based approaches. Our method also shows competitive performance stability during the task of semantic segmentations, showing a promising contribution on ultrasound based prognosis of congenital anomaly in the early intervention, and alleviating the negative effects caused by congenital anomaly.

11.
J Hazard Mater ; 416: 125914, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34492848

RESUMO

A simultaneous denitrifying and mineralizing bacterium, Pseudomonas sp. WZ39 was isolated for fluoride (F-), nitrate (NO3--N), and calcium (Ca2+) removal. Strain WZ39 exhibited a remarkable defluoridation efficiency of 87.49% under a pH of 6.90, F- and Ca2+ concentration of 1.99 and 201.88 mg L-1, respectively. EEM, SEM-EDS, XRD, and FTIR analyses elucidated the chemical adsorption and co-precipitation with calcium salt contributed to the removal of F-. The mechanisms of biomineralization were also investigated by determining the role of bound and unbound extracellular polymeric substances (EPS), cell wall, and calcium channel in nucleation. The results showed that bacteria can promote nucleation on the templates of cell walls or EPS through the electrostatic effect. The presence of the calcium channel blocker inhibited the transport of intracellular Ca2+ to the extracellular environment. The outcome of the present research can provide a theoretical basis for the understanding of MICP phenomenon and the efficient treatment of F- containing groundwater.

12.
Aging (Albany NY) ; 13(undefined)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493691

RESUMO

Although calorie restriction has been reported to extend lifespan in several organisms, animals subjected to calorie restriction consume not only fewer calories but also smaller quantities of food. Whether it is the overall restriction of calories or the coincidental reduction in the quantity of food consumed that mediates the anti-aging effects is unclear. Here, we subjected mice to five dietary interventions. We showed that both calorie and quantity restriction could improve early survival, but no maximum lifespan extension was observed in the mice fed isocaloric diet in which food quantity was reduced. Mice fed isoquant diet with fewer calories showed maximum lifespan extension and improved health among all the groups, suggesting that calorie intake rather than food quantity consumed is the key factor for the anti-aging effect of calorie restriction. Midlife liver gene expression correlations with lifespan revealed that calorie restriction raised fatty acid biosynthesis and metabolism and biosynthesis of amino acids but inhibited carbon metabolism, indicating different effects on fatty acid metabolism and carbohydrate metabolism. Our data illustrate the effects of calories and food quantity on the lifespan extension by calorie restriction and their potential mechanisms, which will provide guidance on the application of calorie restriction to humans.

13.
Front Immunol ; 12: 710750, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34497608

RESUMO

Human regulatory T (Treg) cells play a central role in controlling allergic inflammation in the airways. A reduced number of peripheral Treg cells and decreased suppressive function have been previously reported in the pathogenesis of allergic asthma. However, the characteristic role of specific Treg cell subsets and their mechanisms in the pathogenesis of allergic asthma remain unclear. In this study, we examined the proportion of different Treg cell subsets in both healthy subjects and patients with allergic asthma using flow cytometry and single-cell RNA sequencing. The migration function of the cells was compared using cell sorting and Transwell experiments. Furthermore, two allergen-challenged mouse models and a cell transfer experiment were used to examine the role of these Treg subsets. We found that the proportion of CD25+Foxp3+CD127- Treg cells in the peripheral blood of patients with allergic asthma was lower than in those of healthy subjects. Furthermore, the circulating Treg cells expressed lower levels of CCR6 and IL-17 compared with healthy subjects. The chemokine from the airway mucosa, CCL20, was abundantly expressed, and Transwell experiments further proved that this chemokine promoted CCR6+ Treg cell migration in vitro. A mouse model induced by house dust mite (HDM) revealed that the number of CCR6+ Treg cells in the lung tissue increased remarkably. The incidence of allergic asthma may be related to an increase in Treg cells secreting IL-17 in the lung tissue. Recruited CCR6+ Treg cells are likely to differentiate into Th17-like cells under the Th17 environment present in the lungs. IL-17 derived from Th17-like cells could be associated with the pathology of allergic asthma by promoting Th17 responses, thereby favoring HDM-induced asthma exacerbations.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34499466

RESUMO

Mitochondria are the "power plant" of the cell, providing a constant source of energy, and are involved in a variety of intracellular signaling pathways. Among these pathways, Ca2+ homeostasis is closely related to the normal function of mitochondria. By destroying the Ca2+ steady state of mitochondria and disrupting their multiple cellular activities, tumor cell killing can be achieved. In addition, the presence of an intracellular oxidative stress state triggers the closure of cellular calcium channels, which leads to intracellular Ca2+ retention and enrichment. We designed a targeted and tumor microenvironment (TME)-responsive CaO2-based nanosystem that can selectively target cancer cells for pH-controlled degradation and drug release, alter cellular physiological mechanisms by disrupting Ca2+ homeostasis in an artificial manner, and introduce mitochondrial Ca2+ excess-mediated apoptosis. Meanwhile, the production of Ca(OH)2 will raise the pH of the microenvironment and subsequently promote the oxidation process of glutathione by H2O2 released from CaO2 degradation, achieving the goal of remodeling TME. Moreover, calcium overload of tumor cells and calcification of tissues can both inhibit tumor growth and act as a contrast agent for computed tomography imaging.

15.
Structure ; 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34506732

RESUMO

The tripartite AcrAB-TolC assembly, which spans both the inner and outer membranes in Gram-negative bacteria, is an efflux pump that contributes to multidrug resistance. Here, we present the in situ structure of full-length Escherichia coli AcrAB-TolC determined at 7 Å resolution by electron cryo-tomography. The TolC channel penetrates the outer membrane bilayer through to the outer leaflet and exhibits two different configurations that differ by a 60° rotation relative to the AcrB position in the pump assembly. AcrA protomers interact directly with the inner membrane and with AcrB via an interface located in proximity to the AcrB ligand-binding pocket. Our structural analysis suggests that these AcrA-bridged interactions underlie an allosteric mechanism for transmitting drug-evoked signals from AcrB to the TolC channel within the pump. Our study demonstrates the power of in situ electron cryo-tomography, which permits critical insights into the function of bacterial efflux pumps.

16.
Redox Biol ; 46: 102084, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34364219

RESUMO

Diabetes mellitus (DM) promotes neointimal hyperplasia, characterized by dysregulated proliferation and accumulation of vascular smooth muscle cells (VSMCs), leading to occlusive disorders, such as atherosclerosis and stenosis. Poly (ADP-ribose) polymerase 1 (PARP1), reported as a crucial mediator in tumor proliferation and transformation, has a pivotal role in DM. Nonetheless, the function and potential mechanism of PARP1 in diabetic neointimal hyperplasia remain unclear. In this study, we constructed PARP1 conventional knockout (PARP1-/-) mice, and ligation of the left common carotid artery was performed to induce neointimal hyperplasia in Type I diabetes mellitus (T1DM) mouse models. PARP1 expression in the aorta arteries of T1DM mice increased significantly and genetic deletion of PARP1 showed an inhibitory effect on the neointimal hyperplasia. Furthermore, our results revealed that PARP1 enhanced diabetic neointimal hyperplasia via downregulating tissue factor pathway inhibitor (TFPI2), a suppressor of vascular smooth muscle cell proliferation and migration, in which PARP1 acts as a negative transcription factor augmenting TFPI2 promoter DNA methylation. In conclusion, these results suggested that PARP1 accelerates the process of hyperglycemia-induced neointimal hyperplasia via promoting VSMCs proliferation and migration in a TFPI2 dependent manner.

17.
Plant Biotechnol J ; 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388296

RESUMO

Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.

18.
J Med Chem ; 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34432448

RESUMO

Enlightened by the available structural biology information, a novel series of dihydrothiopyrano[4,3-d]pyrimidine derivatives were rationally designed via scaffold hopping and molecular hybridization strategies. Notably, compound 20a yielded exceptionally potent antiviral activities (EC50 = 4.44-54.5 nM) against various HIV-1 strains and improved resistance profiles (RF = 0.5-5.6) compared to etravirine and rilpivirine. Meanwhile, 20a exhibited reduced cytotoxicity (CC50 = 284 µM) and higher SI values (SI = 5210-63992). Molecular dynamics simulations were performed to rationalize the distinct resistance profiles. Besides, 20a displayed better solubility (sol. = 12.8 µg/mL) and no significant inhibition of the main CYP enzymes. Furthermore, 20a was characterized for prominent metabolic stability and in vivo safety properties. Most importantly, the hERG inhibition profile of 20a (IC50 = 19.84 µM) was a remarkable improvement. Overall, 20a possesses huge potential to serve as a promising drug candidate due to its excellent potency, low toxicity, and favorable drug-like properties.

19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 38(4): 753-763, 2021 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-34459176

RESUMO

As a low-load physiological monitoring technology, wearable devices can provide new methods for monitoring, evaluating and managing chronic diseases, which is a direction for the future development of monitoring technology. However, as a new type of monitoring technology, its clinical application mode and value are still unclear and need to be further explored. In this study, a central monitoring system based on wearable devices was built in the general ward (non-ICU ward) of PLA General Hospital, the value points of clinical application of wearable physiological monitoring technology were analyzed, and the system was combined with the treatment process and applied to clinical monitoring. The system is able to effectively collect data such as electrocardiogram, respiration, blood oxygen, pulse rate, and body position/movement to achieve real-time monitoring, prediction and early warning, and condition assessment. And since its operation from March 2018, 1 268 people (657 patients) have undergone wearable continuous physiological monitoring until January 2020, with data from a total of 1 198 people (632 cases) screened for signals through signal quality algorithms and manual interpretation were available for analysis, accounting for 94.48 % (96.19%) of the total. Through continuous physiological data analysis and manual correction, sleep apnea event, nocturnal hypoxemia, tachycardia, and ventricular premature beats were detected in 232 (36.65%), 58 (9.16%), 30 (4.74%), and 42 (6.64%) of the total patients, while the number of these abnormal events recorded in the archives was 4 (0.63%), 0 (0.00%), 24 (3.80%), and 15 (2.37%) cases. The statistical analysis of sleep apnea event outcomes revealed that patients with chronic diseases were more likely to have sleep apnea events than healthy individuals, and the incidence was higher in men (62.93%) than in women (37.07%). The results indicate that wearable physiological monitoring technology can provide a new monitoring mode for inpatients, capturing more abnormal events and provide richer information for clinical diagnosis and treatment through continuous physiological parameter analysis, and can be effectively integrated into existing medical processes. We will continue to explore the applicability of this new monitoring mode in different clinical scenarios to further enrich the clinical application of wearable technology and provide richer tools and methods for the monitoring, evaluation and management of chronic diseases.


Assuntos
Síndromes da Apneia do Sono , Dispositivos Eletrônicos Vestíveis , Frequência Cardíaca , Humanos , Monitorização Fisiológica , Movimento
20.
Artigo em Inglês | MEDLINE | ID: mdl-34460379

RESUMO

The Family Traveling Salesperson Problem (FTSP) is a variant of the Traveling Salesperson Problem (TSP), in which all vertices are divided into several different families, and the goal of the problem is to find a loop that concatenates a specified number of vertices with minimal loop overhead. As a Non-deterministic Polynomial Complete (NP-complete) problem, it is difficult to deal with it by the traditional computing. On the contrary, as a computer with strong parallel ability, the DNA computer has incomparable advantages over digital computers when dealing with NP problems. Based on this, a DNA algorithm is proposed to deal with FTSP based on the Adleman-Lipton model. In the algorithm, the solution of the problem can be obtained by executing several basic biological manipulations on DNA molecules with O(N2) computing complexity (N is the number of vertices in the problem without the origin). Through the simulation experiments on some benchmark instances, the results show that the parallel DNA algorithm has better performance than traditional computing. The effectiveness of the algorithm is verified by deducing the algorithm process in detail. Furthermore, the algorithm further proves that DNA computing, as one of the parallel computing methods, has the potential to solve more complex big data problems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...