Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.160
Filtrar
1.
J Nat Prod ; 86(1): 24-33, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36634312

RESUMO

Hyperuricemia is the result of overproduction and/or underexcretion of uric acid, and it is a well-known risk factor for gout, hypertension, and diabetes. However, available drugs for hyperuricemia in the clinic are limited. Recently, a lot of research has been conducted in order to discover new uric acid-lowering agents from plants and foods. We found that the extracts from the pericarp of mangosteen reduced urate. Bioactivity-guided study showed that α-mangostin was the principal constituent. Herein, we reported for the first time the hypouricemic activities and underling mechanism of α-mangostin. The α-mangostin dose- and time-dependently decreased the levels of serum urate in hyperuricemic mice and markedly increased the clearance of urate in hyperuricemic rats, exhibiting a promotion of urate excretion in the kidney. Further evidence showed that α-mangostin significantly decreased the protein levels of GLUT9 in the kidneys. The change in the expression of URAT1 was not observed. Moreover, α-mangostin did not inhibit the activities of xanthine oxidoreductase and uricase in vitro or in vivo. Taken together, these findings suggest that α-mangostin has potential to be developed as a new anti-hyperuricemic agent with promoting uric acid excretion.

2.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677540

RESUMO

We researched the interaction between six representative carbon-based nanoparticles (CBNs) and 20 standard amino acids through all-atom molecular dynamics simulations. The six carbon-based nanoparticles are fullerene(C60), CNT55L3, CNT1010L3, CNT1515L3, CNT2020L3, and two-dimensional graphene (graphene33). Their curvatures decrease sequentially, and all of the CNTs are single-walled carbon nanotubes. We observed that as the curvature of CBNs decreases, the adsorption effect of the 20 amino acids with them has an increasing trend. In addition, we also used multi-dimensional clustering to analyze the adsorption effects of 20 amino acids on six carbon-based nanoparticles. We observed that the π-π interaction still plays an extremely important role in the adsorption of amino acids on carbon-based nanoparticles. Individual long-chain amino acids and "Benzene-like" Pro also have a strong adsorption effect on carbon-based nanoparticles.


Assuntos
Simulação de Dinâmica Molecular , Nanotubos de Carbono , Aminoácidos , Nanotubos de Carbono/química , Adsorção
3.
ACS Nano ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36705522

RESUMO

Nanosilicon applications have been shown to increase plant defenses against both abiotic and biotic stresses. Silicon quantum nanodots (Si NDs), a form of nanosilicon, possess excellent biological and physiochemical properties (e.g., minimal size, high water solubility, stability, and biocompatibility), potentially making them more efficient in regulating plant responses to stress than other forms of silicon. However, to date, we still lack mechanistic evidence for how soil-applied Si NDs alter the regulation of plant physical and chemical defenses against insect herbivores. To address this gap, we compared the effect of fluorescent amine-functionalized Si NDs (5 nm) and the conventional fertilizer sodium silicate on maize (Zea mays L.) physical and chemical defenses against the oriental armyworm (Mythimna separata, Walker) caterpillars. We found that 50 mg/kg Si NDs and sodium silicate additions inhibited the growth of caterpillars the most (35.7% and 22.8%, respectively) as compared to other application doses (0, 10, and 150 mg/kg). Both Si NDs and silicate addition activated biosynthesis genes responsible for chemical (benzoxazinoids) and physical (lignin) defense production. Moreover, Si NDs upregulated the gene expression of antioxidant enzymes (SOD, CAT, and POD) and promoted the antioxidant metabolism (flavonoids) in maize leaves under M. separata attack. Finally, we show that, under field conditions, Si ND addition increased maize cob weight (28.7%), cob grain weight (40.8%), and 100-grain weight (26.5%) as compared to the control, and more so than the conventional silicon fertilizer. Altogether, our findings highlight the potential for Si NDs to be used as an effective and ecofriendly crop protection strategy in agroecosystems.

4.
Transp Res Interdiscip Perspect ; : 100757, 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36694823

RESUMO

COVID-19 continues to threaten the world. Relaxing local travel behaviours on preventing the spread of COVID-19, may increase the infection risk in subsequent waves of SARS-CoV-2 transmission. In this study, we analysed changes in the travel behaviour of different population groups (adult, child, student, elderly) during four pandemic waves in Hong Kong before January 2021, by 4-billion second-by-second smartcard records of subway. A significant continuous relaxation in human travel behaviour was observed during the four waves of SARS-CoV-2 transmission. Residents sharply reduced their local travel by 51.9%, 50.1%, 27.6%, and 20.5% from the first to fourth pandemic waves, respectively. The population flow in residential areas, workplaces, schools, shopping areas, amusement areas and border areas, decreased on average by 30.3%, 33.5%, 41.9%, 58.1%, 85.4% and 99.6%, respectively, during the pandemic weeks. We also found that many other cities around the world experienced a similar relaxation trend in local travel behaviour, by comparing traffic congestion data during the pandemic with data from the same period in 2019. The quantitative pandemic fatigue in local travel behaviour could help governments partially predicting personal protective behaviours, and thus to suggest more accurate interventions during subsequent waves, especially for highly infectious virus variants such as Omicron.

5.
Environ Sci Technol ; 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36594866

RESUMO

Trace metal pollution poses a serious threat to the aquatic ecosystem. Therefore, characterizing the long-term environmental behavior of trace metals and their driving forces is essential for guiding water quality management. Based on a long-term data set from 1990 to 2019, this study systematically conducted the spatiotemporal trend assessment, influential factor analysis, and source apportionment of trace elements in the rivers of the German Elbe River basin. Results show that the mean concentrations of the given elements in the last 30 years were found in the order of Fe (1179.5 ± 1221 µg·L-1) ≫ Mn (209.6 ± 181.7 µg·L-1) ≫ Zn (52.5 ± 166.2 µg·L-1) ≫ Cu (5.3 ± 5.5 µg·L-1) > Ni (4.4 ± 8.3 µg·L-1) > Pb (3.3 ± 4.4 µg·L-1) > As (2.9 ± 2.3 µg·L-1) > Cr (1.8 ± 2.4 µg·L-1) ≫ Cd (0.3 ± 1.1 µg·L-1) > Hg (0.05 ± 0.12 µg·L-1). Wavelet analyses show that river flow regimes and flooding dominated the periodic variations in metal pollution. Bayesian network suggests that the hydrochemical factors (i.e., TOC, TP, TN, pH, and EC) chemically influenced the metal mobility between water and sediments. Furthermore, the source apportionment computed by the Bayesian multivariate receptor model shows that the given element contamination was typically attributed to the geogenic sources (17.5, 95% confidence interval: 13.1-17.6%), urban and industrial sources (22.1, 18.0-27.2%), arable soil erosion (24.2, 16.4-31.5%), and historical anthropogenic activities (35.2, 32.8-43.3%). The results provided herein reveal that both the hydrochemical influence on metal mobility and the chronic disturbance from anthropogenic activities caused the long-term variation in trace metal pollution.

6.
Macromol Rapid Commun ; : e2200858, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36661258

RESUMO

Polymer melt strength (MS) is strongly correlated with its molecular structure, while their relationship is not very clear yet. In this work, designable long-chain branched polylactide (LCB-PLA) is prepared in-situ by using a tailor-made (methyl methacrylate) -co- (glycidyl methacrylate) copolymer (MG) with accurate number of reactive sites. A new concept of branching density (φ) in the LCB-PLA system is defined to quantitively study their relationship. Importantly, a critical point of φc  = 5.5 mol/104  mol C is revealed for the first time, below which the zero-shear viscosity (η0 ) corresponding to MS increases slowly with a slope of Δη0 /Δφ âˆ¼ 1400, while it increases sharply above this critical point due to entanglement of neighboring LCB-PLA chains. Consequently, the MS of PLA increased by >100 times by optimizing the LCB structures while maintaining processibility. Therefore, this work provides a deeper understanding and feasible route in quantitative design of polymers with high(er) melt strength for some specialty applications. This article is protected by copyright. All rights reserved.

7.
Small Methods ; : e2201529, 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36683170

RESUMO

Molybdenum disulfide (MoS2 ) is considered as one of the most promising non-noble-metal catalysts for hydrogen evolution reaction (HER). To achieve practical application, introducing sulfur (S) vacancies on the inert basal plane of MoS2 is a widely accepted strategy to improve its HER activity. However, probing active sites at the nanoscale and quantitatively analyzing the related electrocatalytic activity in electrolyte aqueous solution are still great challenges. In this work, utilizing high-resolution scanning electrochemical microscopy, optimized electrodes and newly designed thermal drift calibration software, the HER activity of the S vacancies on an MoS2 inert surface is in situ imaged with less than 20-nm-radius sensitivity and the HER kinetic data for S vacancies, including Tafel plot and onset potential, are quantitatively measured. Additionally, the stability of S vacancies over the wide range of pH 0-13 is investigated. This study provides a viable strategy for obtaining the catalytic kinetics of nanoscale active sites on structurally complex electrocatalysts and evaluating the stability of defects in different environments for 2D material-based catalysts.

8.
J Hazard Mater ; 446: 130730, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36630876

RESUMO

Ball milling is an effective technique to not only activate and reduce the size of commercial microscale zero valent iron (mZVI) but also to mechanochemically sulfidate mZVI. Yet, little is known about the difference between how chlorinated ethenes (CEs) interact with ball milled mZVI (mZVIbm) and mechanochemically sulfidated mZVI (S-mZVIbm). We show that simple ball milling exposed the active Fe0 sites, while mechanochemical sulfidation diminished Fe0 sites and meanwhile increased S2- sites. Mechanochemical sulfidation with [S/Fe]dosed increased from 0 to 0.20 promoted the particle reactivity most for TCE dechlorination (∼14-fold), followed by PCE and 1,1-DCE while it diminished the reactivity for trans-DCE (∼0.4-fold), cis-DCE (∼0.02-fold) and VC (∼0.002-fold) compared to simple ball milling. Sulfidation also improved the electron efficiency of CE dechlorination, except for cis-DCE and VC. The kSA of cis-DCE, VC and trans-DCE dechlorination positively correlated with surface Fe0 content, suggesting their dechlorination was mainly mediated by Fe0 site or reactive atomic hydrogen. The kSA of TCE dechlorination positively correlated with surface S2- content and the dechlorination mainly occurred on S2- sites via direct electron transfer. Increased sulfidation favored direct electron transfer mechanism. The kSA of PCE and 1,1-DCE was not dependent on either parameter and their dechlorination was equally achieved through either mechanism.

9.
J Hazard Mater ; 447: 130747, 2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36680903

RESUMO

Triclocarban (TCC) is a widely used environmental endocrine-disrupting chemical (EDC). Articular injury of EDCs has been reported; however, whether and how TCCs damage the joint have not yet been determined. Herein, we revealed that exposure to TCC caused osteoarthritis (OA) within the zebrafish anal fin. Mechanistically, TCC stimulates the expression of DNMT1 and initiates DNA hypermethylation of the type II collagen coding gene, which further suppresses the expression of type II collagen and other extracellular matrices. This further results in decreased cartilage tissue and narrowing of the intraarticular space, which is typical of the pathogenesis of OA. The regulation of OA occurrence by TCC is conserved between zebrafish cartilage tissue and human chondrocytes. Our findings clarified the hazard and potential mechanisms of TCC towards articular health and highlighted DNMT1 as a potential therapeutic target for OA caused by TCC.

10.
Sci Bull (Beijing) ; 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36681589

RESUMO

The recent discovery of superconductivity (SC) and charge density wave (CDW) in kagome metals AV3Sb5 (A = K, Rb, Cs) provides an ideal playground for the study of emergent electronic orders. Application of moderate pressure leads to a two-dome-shaped SC phase regime in CsV3Sb5 accompanied by the destabilizing of CDW phase. Nonetheless, the nature of this pressure-tuned SC state and its interplay with the CDW are yet to be explored. Here, we perform soft point-contact spectroscopy (SPCS) measurements in CsV3Sb5 to investigate the evolution of superconducting order parameter with pressure. Surprisingly, we find that the superconducting gap is significantly enhanced between the two SC domes, at which the zero-resistance temperature is suppressed and the transition is remarkably broadened. Moreover, the temperature-dependence of the SC gap in this pressure range severely deviates from the conventional Bardeen-Cooper-Schrieffer (BCS) behavior, evidencing for strong Cooper pair phase fluctuations. These findings reveal the complex intertwining of the CDW with SC in the compressed CsV3Sb5, suggesting striking parallel to the cuprate superconductor La2-xBaxCuO4. Our results point to the essential role of charge degree of freedom in the development of intertwining electronic orders, and thus provide new constraints for theories.

11.
Nat Commun ; 14(1): 44, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596799

RESUMO

Defects in solids are unavoidable and can create complex electronic states that can significantly influence the electrical and optical properties of semiconductors. With the rapid progress in the integration of 2D semiconductors in practical devices, it is imperative to understand and characterize the influence of defects in this class of materials. Here, we examine the electrical response of defect filling and emission using deep level transient spectroscopy (DLTS) and reveal defect states and their hybridization in a monolayer MOCVD-grown material deposited on CMOS-compatible substrates. Supported by aberration-corrected STEM imaging and theoretical calculations, we find that neighboring sulfur vacancy pairs introduce additional shallow trap states via hybridization of individual vacancy levels. Even though such vacancy pairs only represent ~10% of the total defect concentration, they can have a substantial influence on the off currents and switching slopes of field-effect transistors based on 2D semiconductors. Our technique, which can quantify the energy states of different defects and their interactions, allows rapid and nondestructive electrical characterization of defect states important for the defect engineering of 2D semiconductors.

12.
Small Methods ; : e2201387, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604985

RESUMO

Sodium-ion batteries (SIBs) have inspired the potential for widespread use in energy storage owing to the advantages of abundant resources and low cost. Benefiting from the layered structure, 2D-layered materials enable fast interlayer transport of sodium ions and thus are considered promising candidates as anodes for SIBs. Herein, a strategy of adjusting crystal orientation is proposed via a solvothermal method to improve sodium-ion transport at the edge of the interlayers in 2D-layered materials. By introducing surfactants and templates, the 2D-layered V5 S8 nanosheets are controlled to align the interlayer diffusion channels vertically to the surface, which promotes the fast transport of Na+ at the edge of the interlayers as revealed by experimental methods and ab initio calculations. Benefiting from the aligned crystal orientation and rGO coating, the vertical-V5 S8 @rGO hybrid delivers a high initial discharge capacity of 350.6 mAh g-1 at a high current density of 15 A g-1 . This work provides a strategy for the structural design of 2D-layered anode materials by adjusting crystal orientation, which demonstrates the promise for applications in fast-charging alkaline-ion batteries.

13.
Food Res Int ; 163: 112198, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36596137

RESUMO

Lotus (Nelumbo nucifera Gaertn.) is an aquatic perennial crop planted worldwide and its leaf (also called "He-Ye") has therapeutic effects on obesity. However, whether the underlying mechanism leads to increased energy expenditure by activation of brown adipocytes has not been clarified. Here, murine C3H10T1/2 mesenchymal stem cells (MSCs) were employed to investigate the effects of ethanol extracts from lotus leaf (LLE) on brown adipocytes formation and the underlying molecular mechanisms. The results showed LLE was rich in polyphenols (383.7 mg/g) and flavonoids (178.3 mg/g), with quercetin 3-O-glucuronide (Q3G) the most abundant (128.2 µg/mg). In LLE-treated C3H10T1/2 MSCs, the expressions of lipolytic factors (e.g., ATGL, HSL, and ABHD5) and brown regulators (e.g., Sirt1, PGC-1α, Cidea, and UCP1) were significantly upregulated compared to that in the untreated MSCs. Furthermore, LLE promoted mitochondrial biogenesis and fatty acid ß-oxidation, as evidenced by increases in the expression of Tfam, Cox7A, CoxIV, Cox2, Pparα, and Adrb3. Likewise, enhanced browning and mitochondrial biogenesis were also observed in Q3G-stimulated cells. Importantly, LLE and Q3G induced phosphorylation of AMPK accompanied by a remarkable increase in the brown fat marker UCP1, while pretreatment with Compound C (an AMPK inhibitor) reversed these changes. Moreover, stimulating LLE or Q3G-treated cells with CL316243 (a beta3-AR agonist) increased p-AMPKα/AMPKα ratio and UCP1 protein expression, indicating ß3-AR/AMPK signaling may involve in this process. Collectively, these observations suggested that LLE, especially the component Q3G, stimulates thermogenesis by activating brown adipocytes, which may involve the ß3-AR/AMPK signaling pathway.


Assuntos
Tecido Adiposo Marrom , Células-Tronco Mesenquimais , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fenótipo , Células-Tronco Mesenquimais/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo
14.
J Immunol Res ; 2023: 8571649, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644540

RESUMO

Osteoclast (OC) abnormalities lead to many osteolytic diseases, such as osteoporosis, inflammatory bone erosion, and tumor-induced osteolysis. Exploring effective strategies to remediate OCs dysregulation is essential. FTY720, also known as fingolimod, has been approved for the treatment of multiple sclerosis and has anti-inflammatory and immunosuppressive effects. Here, we found that FTY720 inhibited osteoclastogenesis and OC function by inhibiting nuclear factor kappa-B (NF-κB) signaling. Interestingly, we also found that FTY720 inhibited osteoclastogenesis by upregulating histone deacetylase 4 (HDAC4) expression levels and downregulating activating transcription factor 4 (ATF4) expression levels. In vivo, FTY720 treatment prevented lipopolysaccharide- (LPS-) induced calvarial osteolysis and significantly reduced the number of tartrate-resistant acid phosphatase- (TRAP-) positive OCs. Taken together, these results demonstrate that FTY720 can inhibit osteoclastogenesis and ameliorate inflammation-induced bone loss. Which may provide evidence of a new therapeutic target for skeletal diseases caused by OC abnormalities.


Assuntos
Reabsorção Óssea , Osteólise , Animais , Camundongos , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Histona Desacetilases/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteólise/tratamento farmacológico , Osteólise/induzido quimicamente , Ligante RANK/metabolismo , Proteínas Repressoras/metabolismo
15.
Adv Mater ; : e2209371, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36644893

RESUMO

Monolayer MoS2 has attracted significant attention owing to its excellent performance as a n-type semiconductor from the TMDC family. It is however strongly desired to develop controllable synthesis methods for 2D p-type MoS2 , which is crucial for complementary logic applications but remains difficult. In this work, we synthesize high-quality NbS2 -MoS2 lateral heterostructures by one-step MOCVD together with monolayer MoS2 substitutionally doped by Nb, resulting in a p-type doped behavior. The heterojunction shows a p-type transfer characteristic with a high on/off current ratio of around 104 , exceeding previously reported values. The band structure through the NbS2 -MoS2 heterojunction is investigated by DFT and quantum transport simulations. Our work provides a scalable approach to synthesize substitutionally doped TMDC materials and provides an insight into the interface between 2D metals and semiconductors in lateral heterostructures, which is imperative for the development of next-generation nanoelectronics and highly integrated devices. This article is protected by copyright. All rights reserved.

16.
NanoImpact ; 29: 100449, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610662

RESUMO

Macro- or micro-nutrients are essential for crop yield and nutritional quality. In this work, selenium engineering nanomaterials (Se ENMs, 0.5 mg‧kg-1) significantly increased the yield and nutritional quality of lettuce, which was better than that of selenite (Na2SeO3). Under the treatment of Se ENMs, macro-nutrients including nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) were increased by 15.8%, 98.5%, 42.8%, 146.9%, and 62.5%, respectively, and micro-nutrients including manganese (Mn), iron (Fe), copper (Cu), and zinc (Zn) were also increased by 87.4%, 78.0%, 61.1%, and 56.1%, respectively. As a result, the improved nutritional status of lettuce leaves increased photosynthesis (59.2%) and yield (37.6%). Root diameters and root tips of lettuce were increased by 23.9% and 18.6%, respectively, upon exposure to Se ENMs, which may be responsible for facilitating the absorption of macro and micro nutrients from the soil. These effects were significantly better than SeO32- treated group. Metabolome results indicated that Se ENMs could improve the shikimic acid, phenylalanine, and tyrosine pathway, resulting in an enhancement of the beneficial compounds, including quercetin, rutin, and coumarin, by 2.9, 2.7, and 2.4-fold, respectively. Besides, pyruvic acid and TCA cycle were also improved by Se ENMs. These results provide new insight into the positive effect of Se ENMs on crop yield and nutritional quality, which demonstrate that the Se ENMs-enabled agriculture practices have a promising prospect as a sustainable crop strategy.

17.
J Biomech ; 146: 111422, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36610388

RESUMO

Transvalvular pressure gradient (ΔP) after aortic valve replacement is an important surrogate of aortic bioprostheses performance. Invasive ΔP is often measured after transcatheter aortic valve replacement to exclude patient-prosthetic mismatch. However, invasive aortic pressures are usually recorded in the pressure recovery (PR) zone downstream of the valve, potentially resulting in ΔP underestimation compared to noninvasive measurements. PR was extensively studied in straight ascending aortas. However, the impact of various aortic arch configurations on ΔP has not been explored. PR was assessed in a pulse duplicating simulator at various cardiac conditions of cardiac output, heart rates and pressures. Three different aortic geometries with identical root dimensions but with different aortic arches were used: (1) curvature 1, (2) curvature 2, and (3) straight aortic models. Instantaneous pressure and peak ΔP measurements were recorded incrementally along the models for each cardiac condition. The models with aortic arches produced two distinct PR zones (after the valve and after the aortic arch), whereas the model without an aortic arch produced only one PR zone (after the valve). The trend of the pressure and ΔP curves for each model was independent of the cardiac condition used, but the individually measured pressure magnitudes did change with different conditions. In this study, we illustrated the differences in PR between distinct aortic curvatures and straight aorta. PR affects pressure and ΔP measurements. These effects are clear when recording aortic pressures by catheterization and echocardiography.


Assuntos
Estenose da Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Humanos , Valva Aórtica/fisiologia , Débito Cardíaco , Estenose da Valva Aórtica/cirurgia , Aorta , Desenho de Prótese
18.
Ecotoxicol Environ Saf ; 249: 114381, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508801

RESUMO

Black carbon (BC) is an important component of atmospheric PM 2.5 and the second largest contributor to global warming. 1,4-naphthoquinone-coated BC (1,4 NQ-BC) is a secondary particle with great research value, so we chose 1,4 NQ-BC as the research object. In our study, mitochondria and lysosomes were selected as targets to confirm whether they were impaired by 1,4 NQ-BC, label free proteomics technology, fluorescent probes, qRT-PCR and western blots were used to investigate the mechanism of 1,4 NQ-BC toxicity. We found 494 differentially expressed proteins (DEPs) in mitochondria and 86 DEPs in lysosomes using a proteomics analysis of THP1 cells after 1,4 NQ-BC exposure for 24 h. Through proteomics analysis and related experiments, we found that 1,4 NQ-BC can damage THP-1-M cells by obstructing autophagy, increasing lysosomal membrane permeability, disturbing the balance of ROS, and reducing the mitochondrial membrane potential. It is worth noting that 1,4 NQ-BC prevented the removal of FTL by inhibiting autophagy, and increased IL-33 level by POR/FTL/IL-33 axis. We first applied proteomics to study the damage mechanism of 1,4 NQ-BC on THP1 cells. Our research will enrich knowledge of the mechanism by which 1,4 NQ-BC damages human macrophages and identify important therapeutic targets and adverse outcome pathways for 1,4 NQ-BC-induced damage.


Assuntos
Interleucina-33 , Naftoquinonas , Humanos , Interleucina-33/metabolismo , Regulação para Cima , Naftoquinonas/metabolismo , Carbono/metabolismo , Apoferritinas/metabolismo
19.
Food Chem X ; 17: 100523, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36478710

RESUMO

To study the effect of rigor state on physicochemical characteristics of Funiu white goat and Oula sheep meat batters. In this study, the effect of rigor state of Funiu white goat and Oula sheep silverside muscle on meat batter quality and physicochemical properties was determined. Results indicated that meat batters obtained from post-rigor meat had less water holding capacity and lower immobilized water than that obtained from pre-rigor meat. The gel network of meat batters produced with Funiu white goat muscle appeared denser and smoother compared with Oula sheep meat batters. Furthermore, meat batters produced with pre-rigor meat had higher hardness compared to that produced with post-rigor meat. Differences in response values were found for CPS (sensitivity to sweet taste) of meat batters made with meat in the three rigor states. Collectively, both Funiu white goat and Oula sheep meat in pre-rigor state were more suitable to minced meat product production compared to post-rigor meat based on gel properties.

20.
Nano Lett ; 23(1): 82-90, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542057

RESUMO

Cesium lead halide perovskite nanocrystals (PNCs) exhibit promising prospects for application in optoelectronic devices. However, electroactivated near-infrared (NIR) PNC light-emitting diodes (LEDs) with emission peaks over 800 nm have not been achieved. Herein, we demonstrate the electroactivated NIR PNC LEDs based on Yb3+-doped CsPb(Cl1-xBrx)3 PNCs with extraordinary high NIR photoluminescence quantum yields over 170%. The fabricated NIR LEDs possess an irradiance of 584.7 µW cm-2, an EQE of 1.2%, and a turn-on voltage of 3.1 V. The ultrafast quantum cutting process from the PNC host to Yb3+ has been revealed as the main mechanism of electroluminescence (EL)-activated Yb3+ for the first time via exploring how the trend between the EL intensity of PNC and Yb3+ varies with different voltages along with the tendency of temperature- and doping-concentration-dependent PL and EL spectra. This work will extend the application of PNCs to optical communication, night-vision devices, and biomedical imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...