Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 331
Filtrar
1.
J Nanosci Nanotechnol ; 20(4): 2389-2394, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31492252

RESUMO

Amidoxime polyacrylonitrile (AOPAN) beads with diameter of around 2 mm were prepared by a simple ball-dropping method, and were used as support for the immobilization of Pd or PdNi nanoparticles for catalytic application in formic acid dehydrogenation. The Pd-based nanoparticles showed uniform distribution on the surface of the AOPAN beads, with good accessibility to reagents. The optimized PdNi/AOPAN catalyst can efficiently convert formic acid to hydrogen with a turn over frequency of 3041 h-1 under ambient conditions, and this catalytic activity was maintained well for at least seven cycles. The millimeter-sized beads can float on water, making them easy to manipulate and recover without any weight loss. The amidoxime and cyano groups on the surface of the AOPAN beads play critical roles in stabilizing and distributing Pd-based nanoparticles, and may also participate in the synergistic activation of formic acid dehydrogenation.

3.
Pest Manag Sci ; 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31677235

RESUMO

BACKGROUND: Portulaca oleracea L., common purslane, is an insecticidal plant that has been documented as a "Chinese indigenous pesticide", and it is seldom visited by insects in the field. However, identification of anti-insect compounds and mechanisms of action are still unclear. RESULTS: Interplanting purslane with Chinese cabbage demonstrated that purslane may contain secondary compounds that S. litura avoids eating. Four compounds were isolated from P. oleracea by directed anti-insect activity, and their chemical structures were identified by NMR spectra as (9Z,11E,15Z)-13-hydroxyoctadeca-9,11,15-trienoic acid (1), portulacanone A (2), portulacanone D (3), and a new natural product 2,4'-dihydroxy-3',5'-dimethoxychalcone (4). A combination of compound 1 and 2 possessed stronger activity than other combinations (compounds 1 + 3; 1 + 4; 2 + 3; 2 + 4; 3 + 4). Both active compounds were detected in all samples from 23 regions in China, and concentrations in samples collected from 17 regions were generally above 500 µg/kg. Concentrations of compounds 1 and 2 fluctuated greatly from April to November, and reached maximum concentrations of 45951.44 µg/kg for compound 1 and 3739.09 µg/kg for compound 2 in November. The combination of these compounds (1 + 2) caused mid-gut structural deformation and tissue decay as determined by mid-gut histopathology of S. litura. CONCLUSION: In general, these active compounds coexisted contributed to protect purslane from partly insects. This research also provides a new insight into the use purslane as important ingredient of botanical pesticide alternatives to traditional chemical pesticides. This article is protected by copyright. All rights reserved.

5.
Am J Trop Med Hyg ; 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-31549610

RESUMO

Mannose-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are important proteins in the lectin pathway of the immune system. Mannose-binding lectin and MASP-2 deficiencies have been reported to be responsible for various fungal infections. We investigated the association of MBL and MASP-2 variants with sporotrichosis in a Chinese population and revealed one rare heterozygous mutation in a disseminated cutaneous patient without immunosuppressive conditions (p.156_159dupCHNH). We also found that sporotrichosis patients had decreased levels of MBL and MASP-2 in their serum samples compared with controls. Our findings linked, for the first time, MASP-2 deficiencies with susceptibility to Sporothrix sp.

6.
Zhongguo Zhen Jiu ; 39(9): 936-9, 2019 Sep 12.
Artigo em Chinês | MEDLINE | ID: mdl-31544380

RESUMO

OBJECTIVE: To compared the therapeutic effect between filiform fire needle assisted 308 nm excimer laser and simple 308 nm excimer laser on vitiligo of different parts. METHODS: Target lesions of 134 patients were divided into an observation group and a control group according to the principle of self-controlled, 201 pieces in each one. In the observation group, filiform fire needle was performed at target lesions. Then target lesions both of the two groups were irradiated with 308 nm excimer laser at the same time. Once every 2 weeks, totally 10 treatments were required. The effective rate and effective rate, color recovery rate and responding time of different parts in the two groups were evaluated 2 weeks after treatment. RESULTS: The effective rate in the observation group was 82.59% (166/201), which was higher than 68.16% (137/201) in the control group (P<0.01). The effective rate of face-neck, trunk, limbs and hand-foot were 90.32%, 81.63%, 81.48% and 58.62% respectively in the observation group, which were higher than 82.80%, 69.39%, 51.85% and 31.03% in the control group (P<0.01, P<0.05). The color recovery rate of different parts in the observation group was higher than the control group, and the effect was faster in the observation group (P<0.01, P<0.05). CONCLUSION: Filiform fire needle as an adjunctive therapy, combined with 308 nm excimer laser are more effective than simple 308 nm excimer laser for vitiligo of different parts. Combination therapy has a shorter responding time, the face-neck has the best effect and hand-foot has poor effect.


Assuntos
Lasers de Excimer , Vitiligo , Terapia Combinada , Humanos , Pescoço , Resultado do Tratamento , Vitiligo/terapia
7.
Biomaterials ; 223: 119462, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31491599

RESUMO

Covalent organic frameworks (COFs) and their derivatives represent an emerging class of crystalline porous materials with broad potential applications. However, the biomedical applications of them were limited by the large size, low dispersivity, poor bioavailability within cells and metabolic problems. Herein, renal-clearable ultrasmall COF nanodots have been synthesized and utilized as efficient cancer therapy agents. A simple liquid exfoliation strategy was used to prepare COF nanodots. After polyethylene glycol (PEG) conjugation, the PEG coated COF nanodots (COF nanodots-PEG) showed improved physiological stability and biocompatibility. In addition, the well isolated porphyrin molecules endowed COF nanodots-PEG good light-triggered reactive oxygen species production ability, which showed excellent photodynamic therapy efficiency with good tumor accumulation ability. In particular, due to the ultrasmall size, COF nanodots-PEG could be cleared from the body through the renal filtration with no appreciable in vivo toxicity. Our study highlights the potential of COFs-based nanoparticles for biomedical applications.

8.
Anticancer Drugs ; 30(8): 803-811, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31419217

RESUMO

Gastric cancer (GC), one of the most common malignant tumors and the second most common leading cause of cancer-related death worldwide, is a biologically heterogeneous disease accompanied by various genetic and epigenetic alterations. However, the molecular mechanisms underlying this disease are complex and not completely understood. Increasing studies have shown that aberrant microRNA (miRNA) expression is associated with GC tumorigenesis and growth. MiR-1297 has been confirmed to be a cancer suppressor in diverse tumors in humans. However, to date, the function and mechanism of miR-1297 in GC have not been determined. Here, we found that the expression of miR-1297 was significantly reduced in GC tissues or GC cell lines compared with paracarcinoma normal tissue or normal cell lines. Exogenic overexpression of miR-1297 in GC cell lines can inhibit cell proliferation and colony formation and induce apoptosis, and inhibition of miR-1297 in GC cell lines can promote cell proliferation and colony formation, and reduce apoptosis in vitro. We further confirmed that miR-1297 acted as a tumor suppressor through targeting cell division control protein 6 (CDC6) in GC. Moreover, the inverse relationship between miR-1297 and CDC6 was verified in GC cell lines. Our results indicated that miR-1297 is a potent tumor suppressor in GC, and its antiproliferative and gene-regulatory effects are, in part, mediated through its downstream target gene, CDC6. These findings implied that miR-1297 might be used as a novel therapeutic target of GC.

9.
Neurosurg Focus ; 47(2): E6, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31370027

RESUMO

OBJECTIVE: Various implanted materials are used in neurosurgery; however, there remains a lack of pooled data on infection rates (IRs) and infective bacteria over past decades. The goal of this study was to investigate implant infections in neurosurgical procedures in a longitudinal retrospective study and to evaluate the IRs of neurosurgically implanted materials and the distribution of pathogenic microorganisms. METHODS: A systematic literature search was conducted using PubMed and Web of Science databases for the time period between 1968 and 2018. Neurosurgical implant infections were studied in 5 subgroups, including operations or diseases, implanted materials, bacteria, distribution by country, and time periods, which were obtained from the literature and statistically analyzed. In this meta-analysis, statistical heterogeneity across studies was tested by using p values and I2 values between studies of associated pathogens. Egger's test was used for assessing symmetries of funnel plots with Stata 11.0 software. Methodological quality was assessed to judge the risk of bias according to the Cochrane Handbook. RESULTS: A total of 22,971 patients from 227 articles satisfied the study's eligibility criteria. Of these, 1118 cases of infection were reported, and the overall IR was 4.87%. In this study, the neurosurgical procedures or disorders with the top 3 IRs included craniotomy (IR 6.58%), cranioplasty (IR 5.89%), and motor movement disorders (IR 5.43%). Among 13 implanted materials, the implants with the top 3 IRs included polypropylene-polyester, titanium, and polyetheretherketone (PEEK), which were 8.11%, 8.15%, and 7.31%, respectively. Furthermore, the main causative pathogen was Staphylococcus aureus and the countries with the top 3 IRs were Denmark (IR 11.90%), Korea (IR 10.98%), and Mexico (IR 9.26%). Except for the low IR from 1998 to 2007, the overall implant IR after neurosurgical procedures was on the rise. CONCLUSIONS: In this study, the main pathogen in neurosurgery was S. aureus, which can provide a certain reference for the clinic. In addition, the IRs of polypropylene-polyester, titanium, and PEEK were higher than other materials, which means that more attention should be paid to them. In short, the total IR was high in neurosurgical implants and should be taken seriously.

10.
Cancer Med ; 8(12): 5619-5628, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31407497

RESUMO

Methylated SEPT9 showed relatively low sensitivity in detecting early stage colorectal cancer (CRC) and advanced adenomas (AA) in plasma. Combination of multiple biomarkers was an effective strategy to improve sensitivity in early stage cancer diagnosis and screening. A new qPCR-based assay combining the detection of methylated SEPT9 and SDC2 (ColoDefense test) was used. Methylation statuses of SEPT9 and SDC2 were examined in 40 sets of cancer tissues and paired adjacent tissues, 10 adenomatous polyps and 3 hyperplastic polyps (HP). Then evaluated with 384 plasma samples, including 117 CRC patients, 23 AA patients, 78 small polyps patients, and 166 normal individuals. The limit of detection of ColoDefense was about 25 pg per reaction. Both SEPT9 and SDC2 were shown by ColoDefense to be heavily methylated in CRC tissues when compared to paired paracancerous tissues and HP (P < .01). The sensitivities for detecting AA and stage I CRC by plasma SEPT9 methylation alone were 12.1% and 65.0%, and those by plasma SDC2 methylation alone were 43.5% and 55.0%. In comparison, the sensitivities to detect AA and stage I CRC by ColoDefense improved to 47.8% and 80.0%. The overall sensitivity of ColoDefense in detecting CRC was 88.9% (95% CI: 81.4%-93.7%) with a specificity of 92.8% (95% CI: 87.4%-96.0%). Detection of the combinatorial biomarker of methylated SEPT9 and/or SDC2 is a powerful, convenient and highly effective strategy for early CRC screening with high sensitivity and specificity.

11.
Biomaterials ; 219: 119340, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31357007

RESUMO

The rate-limiting step in cutaneous wound healing, namely, the transition from inflammation to cell proliferation, depends on the high plasticity of macrophages to prevent inflammation in the wound tissues in a timely manner. Thus, strategies that reprogram inflammatory macrophages may improve the healing of poor wounds, particularly in the aged skin of individuals with diabetes or other chronic diseases. As shown in our previous study, KGM-modified SiO2 nanoparticles (KSiNPs) effectively activate macrophages to differentiate into the M2-type phenotype by inducing mannose receptor (MR) clustering on the cell surface. Here, we assess whether KSiNPs accelerate wound healing following acute or chronic skin injury. Using a full-thickness excision model in either diabetic mice or healthy mice, the wounds treated with KSiNPs displayed a dramatically increased closure rate and collagen production, along with decreased inflammation and increased angiogenesis in the regenerating tissues. Furthermore, KSiNPs induced the formation of M2-like macrophages by clustering MR on the cells. Accordingly, the cytokines produced by the KSiNP-treated macrophages were capable of inducing fibroblast proliferation and subsequent secretion of extracellular matrix (ECM). Based on these results, KSiNPs display great potential as an effective therapeutic approach for cutaneous wounds by effectively suppressing excessive or persistent inflammation and fibrosis.

12.
Pharmacol Res ; 146: 104336, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31271846

RESUMO

Alzheimer's disease (AD) and Parkinson's disease (PD) are recognized as the universal neurodegenerative diseases, with the involvement of misfolded proteins pathology, leading to oxidative stress, glial cells activation, neuroinflammation, mitochondrial dysfunction, and cellular apoptosis. Several discoveries indicate that accumulation of pathogenic proteins, i.e. amyloid ß (Aß), the microtubule-binding protein tau, and α-synuclein, are parallel with oxidative stress, neuroinflammation, and mitochondrial dysfunction. Whether the causative factors are misfolded proteins or these pathophysiological changes, leading to neurodegeneration still remain ambiguous. Importantly, directing pharmacological researches towards the prevention of AD and PD seem a promising approach to detect these complicating mechanisms, and provide new insight into therapy for AD and PD patients. Mangiferin (MGF, 2-C-ß-D-glucopyranosyl-1, 3, 6, 7-tetrahydroxyxanthone), well-known as a natural product, is detached from multiple plants, including Mangifera indica L. With the structure of C-glycosyl and phenolic moiety, MGF possesses multipotent properties starting from anti-oxidant effects, to the alleviation of mitochondrial dysfunction, neuroinflammation, and cellular apoptosis. In particular, MGF can cross the blood-brain barrier to exert neuronal protection. Different researches implicate that MGF is able to protect the central nervous system from oxidative stress, mitochondrial dysfunction, neuroinflammation, and apoptosis under in vitro and in vivo models. Additional facts support that MGF plays a role in improving the declined memory and cognition of rat models. Taken together, the neuroprotective capacity of MGF may stand out as an agent candidate for AD and PD therapy.

13.
Nanoscale ; 11(28): 13289-13299, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31287483

RESUMO

The bio-antioxidant ability of nanoceria has been mainly ascribed to its ability to mimic superoxide dismutase (SOD) and catalase (CAT), and its mechanisms are thought to be analogous to those of the natural enzymes. Accordingly, nanoceria has been called a nanozyme, a nanomaterial mimicking enzymes. Because they overlook the real structural features of nanoceria, these hypothetical mechanisms cannot explain the important antioxidant experiments of nanoceria and have little predictive power. We hereby study the O2˙- and H2O2 scavenging mechanisms of nanoceria using first principles calculations, taking into account the role of oxygen vacancies that are practically abundant in nanoceria. The results reveal atomistic-level mechanisms responsible for the SOD and CAT mimetic activities of nanoceria. The newly created surface defect states in the electronic band structures of the shortly-lived intermediate species, called transient surface defect states (TSDSs), play critical roles in the enzyme mimetic catalysis and can serve as the bridge between computations and experiments at the atomistic level. The energy levels of TSDSs, which depend on the concentration and distribution of oxygen vacancies, determine whether the nanoceria is eligible for the catalysis. Besides the known enzyme mimicking mechanisms, the non-catalytic chemical reduction mechanisms are also responsible for the scavenging of O2˙- and H2O2, in which nanoceria serves as a reducing agent rather than a catalyst. The chemical reduction pathways poison the active sites of nanoceria which serve to mimic SOD and thus deteriorate its SOD mimetic activity. The results provide guidance for the engineering of nanoceria for bio-antioxidant applications. In particular, the proposed catalytic model can be generalized for the screening and design of high-performance nanozymes based on semiconductor nanomaterials.

14.
Anal Chim Acta ; 1078: 53-59, 2019 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31358228

RESUMO

Potentiometric aptasensors enhanced by integrating advanced nanomaterials are of particular interest for the detection of multiplex species (e.g., proteins, bacteria, micro-organisms) due to their low cost, ease of operation, and low detection limits. However, potentiometric detection of small ionic species aptasensors is still challenging. This article describes the first example of a label-free G-quadruplex-based potentiometric aptasensing platform for the detection of Pb2+. Polyion oligonucleotide-labeled gold nanoparticles (AuNPs-DNA) as probes are modified on Au electrode, providing high-density negative charge on the electrode surface. These signal-amplifying probes can selectively form G-quadruplexes with the presence of Pb2+ ions and reduce the negative charges on the electrode surface, hence achieving potentiometric detection of Pb2+ ions with high selectivity. The AuNPs-DNA-based aptasensor shows an acceptable sensitivity over a wide range from 10-11 to 10-6 M with a detection limit of 8.5 pM. Furthermore, confirmed by coupled plasma mass spectrometry, the sensing platform is capable of performing effective and accurate detection of Pb2+ level in real water samples. The presented aptasensor offers a fast, convenient, low-maintenance, and highly sensitive alternative for on-site water pollution detections.

15.
Echocardiography ; 36(7): 1397-1400, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31209920

RESUMO

We describe a case of a mass-like echocardiographic density on a mechanical prosthetic aortic valve. We initially suspected a thrombus vs vegetation on transthoracic echocardiography, but after transesophageal echocardiography, the density was subsequently determined to be cavitation by reviewing the initial images in slow motion.

16.
Dis Markers ; 2019: 5232780, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089394

RESUMO

Background: Combination of multiple biomarkers was an effective strategy to improve sensitivity in cancer diagnosis and screening. However, the performance of the combination of methylated SEPT9 and SDC2 for detection of colorectal cancer (CRC) has yet to be reported. Methods: A new qPCR-based assay combining the detection of methylated SEPT9 and SDC2 was used. Methylation statuses of SEPT9 and SDC2 were examined in 19 sets of cancer tissues and paired adjacent tissues and further evaluated with 225 serum samples, including 111 CRC patients and 114 no evidence of disease individuals. Results: SEPT9 and SDC2 methylation levels were higher in 94.7% and 100.0% of cancer tissues than in their paired adjacent tissues. The sensitivities for detecting CRC by SEPT9 methylation alone and SDC2 methylation alone were 73.0% (95% CI: 63.6-80.8%) and 71.2% (95% CI: 61.8-79.2%), respectively, with the same specificity of 95.6% (95% CI: 89.6-98.4%). However, when SEPT9 methylation was combined with SDC2 methylation to detect CRC, the sensitivity was improved to 86.5% (95% CI: 78.4-92.0%) with a specificity of 92.1% (95% CI: 85.1-96.1%). Conclusion: The combination of methylated SEPT9 and SDC2 detection in serum has the potential to be a noninvasive strategy for CRC screening.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias Colorretais/sangue , Técnicas de Diagnóstico Molecular/métodos , Septinas/sangue , Sindecana-2/sangue , Idoso , Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Metilação de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos , Sensibilidade e Especificidade , Septinas/genética , Sindecana-2/genética
17.
J Hematol Oncol ; 12(1): 49, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097020

RESUMO

BACKGROUND: Chimeric antigen receptor engineered T cells (CAR-T) have demonstrated extraordinary efficacy in B cell malignancy therapy and have been approved by the US Food and Drug Administration for diffuse large B cell lymphoma and acute B lymphocytic leukemia treatment. However, treatment of T cell malignancies using CAR-T cells remains limited due to the shared antigens between malignant T cells and normal T cells. CD5 is considered one of the important characteristic markers of malignant T cells and is expressed on almost all normal T cells but not on NK-92 cells. Recently, NK-92 cells have been utilized as CAR-modified immune cells. However, in preclinical models, CAR-T cells seem to be superior to CAR-NK-92 cells. Therefore, we speculate that in addition to the short lifespan of NK-92 cells in mice, the costimulatory domain used in CAR constructs might not be suitable for CAR-NK-92 cell engineering. METHODS: Two second-generation anti-CD5 CAR plasmids with different costimulatory domains were constructed, one using the T-cell-associated activating receptor-4-1BB (BB.z) and the other using a NK-cell-associated activating receptor-2B4 (2B4.z). Subsequently, BB.z-NK and 2B4.z-NK were generated. Specific cytotoxicity against CD5+ malignant cell lines, primary CD5+ malignant cells, and normal T cells was evaluated in vitro. Moreover, a CD5+ T cell acute lymphoblastic leukemia (T-ALL) mouse model was established and used to assess the efficacy of CD5-CAR NK immunotherapy in vivo. RESULTS: Both BB.z-NK and 2B4.z-NK exhibited specific cytotoxicity against CD5+ malignant cells in vitro and prolonged the survival of T-ALL xenograft mice. Encouragingly, 2B4.z-NK cells displayed greater anti-CD5+ malignancy capacity than that of BB.z-NK, accompanied by a greater direct lytic side effect versus BB.z-NK. CONCLUSIONS: Anti-CD5 CAR-NK cells, particularly those constructed with the intracellular domain of NK-cell-associated activating receptor 2B4, may be a promising strategy for T cell malignancy treatment.

18.
Nat Commun ; 10(1): 2272, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118418

RESUMO

Switching macrophages from a pro-tumor type to an anti-tumor state is a promising strategy for cancer immunotherapy. Existing agents, many derived from bacterial components, have safety or specificity concerns. Here, we postulate that the structures of the bacterial signals can be mimicked by using non-toxic biomolecules of simple design. Based on bioactivity screening, we devise a glucomannan polysaccharide with acetyl modification at a degree of 1.8 (acGM-1.8), which specifically activates toll-like receptor 2 (TLR2) signaling and consequently induces macrophages into an anti-tumor phenotype. For acGM-1.8, the degree of acetyl modification, glucomannan pattern, and acetylation-induced assembly are three crucial factors for its bioactivity. In mice, intratumoral injection of acGM-1.8 suppresses the growth of two tumor models, and this polysaccharide demonstrates higher safety than four classical TLR agonists. In summary, we report the design of a new, safe, and specific TLR2 agonist that can generate macrophages with strong anti-tumor potential in mice.


Assuntos
Antineoplásicos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Neoplasias/tratamento farmacológico , Receptor 2 Toll-Like/agonistas , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HEK293 , Humanos , Injeções Intralesionais , Macrófagos/metabolismo , Mananas/química , Mananas/farmacologia , Mananas/uso terapêutico , Camundongos , Camundongos Knockout , Neoplasias/imunologia , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/metabolismo
19.
Med Sci Monit ; 25: 3941-3956, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31132294

RESUMO

BACKGROUND Adenocarcinoma of the lung is a type of non-small cell lung cancer (NSCLC). Clinical outcome is associated with tumor grade, stage, and subtype. This study aimed to identify RNA expression profiles, including long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA, associated with clinical outcome in adenocarcinoma of the lung using bioinformatics data. MATERIAL AND METHODS The miRNA and mRNA expression profiles were downloaded from The Cancer Genome Atlas (TCGA) database, and lncRNA expression profiles were downloaded from The Atlas of Noncoding RNAs in Cancer (TANRIC) database. The independent dataset, the Gene Expression Omnibus (GEO) accession dataset, GSE81089, was used. RNA expression profiles were used to identify comprehensive prognostic RNA signatures based on patient survival time. RESULTS From 7,704 lncRNAs, 787 miRNAs, and 28,937 mRNAs of 449 patients, four joint RNA molecular signatures were identified, including RP11-909N17.2, RP11-14N7.2 (lncRNAs), MIR139 (miRNA), KLHDC8B (mRNA). The random forest (RF) classifier was used to test the prediction ability of patient survival risk and showed a good predictive accuracy of 71% and also showed a significant difference in overall survival (log-rank P=0.0002; HR, 3.54; 95% CI, 1.74-7.19). The combined RNA signature also showed good performance in the identification of patient survival in the validation and independent datasets. CONCLUSIONS This study identified four RNA sequences as a prognostic molecular signature in adenocarcinoma of the lung, which may also provide an increased understanding of the molecular mechanisms underlying the pathogenesis of this malignancy.

20.
Virus Genes ; 55(4): 490-501, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31030330

RESUMO

Orf virus (ORFV), a typical member of the Parapoxvirus genus within the family Poxviridae, which is the causative agent of Orf, a common epitheliotropic viral disease of sheep, goats, wild ruminants, and humans. In the present study, we sequenced the complete genomic sequences of two ORFV strains (ORFV-SY17, isolated from sheep, and ORFV-NA17, isolated from goat) and conducted the comparative analysis of multiple ORFVs. The complete genomic sequence of ORFV-SY17 was at length of 140,413 bp, including 131 potential open reading frames (ORFs) flanked by inverted terminal repeats (ITRs) of 4267 bp at both ends. The ORFV-NA17 strain displayed the similar genome structure with ORFV-SY17. The whole genomic sequence of ORFV-NA17 strain was 139,287 bp in length and contained 132 ORFs flanked by ITRs of 3974 bp. The overall G+C contents of ORFV-SY17 and ORFV-NA17 genome sequences were about 63.8% and 63.7%, respectively. The ITR sequences analysis showed that ORFV-SY17 and ORFV-NA17 contained the terminal BamHI sites and conserved telomere resolution sequences at both ends of their genome. In addition, comparative analysis of ORFs among ORFV-SY17, ORFV-NA17, and other ORFV strains revealed several sequence variations caused by insertions or deletions, especially in ORFs 005 and 116, which were very likely associated with host species. Phylogenetic analysis based on the complete genome sequences revealed that ORFV-SY17 was genetically closely related to NA1/11 and HN3/12 strains derived from sheep, while ORFV-NA17 was closely related to YX strain derived from goat. The multiple alignment of deduced amino acid sequences further revealed the genetic relationship between host species and genetic variations of ORFV strains. Taken together, the availability of genomic sequences of ORFV-SY17 and ORFV-NA17 strains from Jilin Province will aid in our understanding of the genetic diversity and evolution of ORFV strains in this region and can assist in distinguishing between ORFV strains that originate in sheep and goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA