Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33878260

RESUMO

Distributed renewable kinetic energies are ubiquitous but with irregular amplitudes and frequencies, which, as one category of "high-entropy" energies, are crucial for next-generation self-powered electronics. Herein, we present a flexible waterproof dual-mode textile triboelectric nanogenerator (TENG), which can simultaneously scavenge multiple "high-entropy" kinetic energies, including human motions, raindrops, and winds. A freestanding-mode textile TENG (F-TENG) and a contact-separation-mode textile TENG (CS-TENG) are integrated together. The structure parameters of the textile TENG are optimized to improve the output performances. The raindrop can generate a voltage of up to ∼4.3 V and a current of about ∼6 µA, while human motion can generate a voltage of over 120 V and a peak power density of ∼500 mW m-2. The scavenged electrical energies can be stored in capacitors for powering small electronics. Therefore, we demonstrated a facile preparation of a TENG-based energy textile that is highly promising for kinetic energy harvesting and self-powered electronics.

2.
Nano Lett ; 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33885320

RESUMO

As a new generation of light sources, GaN-based light-emitting diodes (LEDs) have wide applications in lighting and display. Heat dissipation in LEDs is a fundamental issue that leads to a decrease in light output, a shortened lifespan, and the risk of catastrophic failure. Here, the temperature spatial distribution of the LEDs is revealed by using high-resolution infrared thermography, and the piezo-phototronic effect is proved to restrain efficaciously the temperature increment for the first time. We observe the temperature field and current density distribution of the LED array under external strain compensation. Specifically, the temperature rise caused by the self-heating effect is reduced by 47.62% under 0.1% external strain, which is attributed to the enhanced competitiveness of radiative recombination against nonradiative recombination due to the piezo-phototronic effect. This work not only deepens the understanding of the piezo-phototronic effect in LEDs but also provides a novel, easy-to-implement, and economical method to effectively enhance thermal management.

3.
ACS Nano ; 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33913695

RESUMO

With the advantages of superior wear resistance, mechanical durability, and stability, the liquid-solid mode triboelectric nanogenerator (TENG) has been attracting much attention in the field of energy harvesting and self-powered sensors. However, most reports are primarily observational, and there still lacks a universal model of this kind of TENG. Here, an equivalent circuit model and corresponding governing equations of a water-solid mode TENG are developed, which could easily be extended to other types of liquid-solid mode TENGs. Based on the first-order lumped circuit theory, the full equivalent circuit model of water-solid mode TENG is modeled as a series connection of two capacitors and a water resistor. Accordingly, its output characteristics and critical influences are examined, to investigate the relevant physical mechanism behind them. Afterward, a three-dimensional water-solid TENG array constructed from many single-wire TENGs is fabricated, which can not only harvest tiny amounts of energy from any movement of water, but also can verify our theoretical predictions. The fundamentals of the water-solid mode TENG presented in this work could contribute to solving the problem of electrical phenomena on a liquid-solid interface, and may establish a sound basis for a thorough understanding of the liquid-solid mode TENG.

4.
Micromachines (Basel) ; 12(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806024

RESUMO

Accurate monitoring of motion and sleep states is critical for human health assessment, especially for a healthy life, early diagnosis of diseases, and medical care. In this work, a smart wearable sensor (SWS) based on a dual-channel triboelectric nanogenerator was presented for a real-time health monitoring system. The SWS can be worn on wrists, ankles, shoes, or other parts of the body and cloth, converting mechanical triggers into electrical output. By analyzing these signals, the SWS can precisely and constantly monitor and distinguish various motion states, including stepping, walking, running, and jumping. Based on the SWS, a fall-down alarm system and a sleep quality assessment system were constructed to provide personal healthcare monitoring and alert family members or doctors via communication devices. It is important for the healthy growth of the young and special patient groups, as well as for the health monitoring and medical care of the elderly and recovered patients. This work aimed to broaden the paths for remote biological movement status analysis and provide diversified perspectives for true-time and long-term health monitoring, simultaneously.

5.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801370

RESUMO

Mechanical motion sensing and monitoring is an important component in the field of industrial automation. Rotary motion is one of the most basic forms of mechanical motion, so it is of great significance for the development of the entire industry to realize rotary motion state monitoring. In this paper, a triboelectric rotary motion sensor (TRMS) with variable amplitude differential hybrid electrodes is proposed, and an integrated monitoring system (IMS) is designed to realize real-time monitoring of industrial-grade rotary motion state. First, the operating principle and monitoring characteristics are studied. The experiment results indicate that the TRMS can achieve rotation speed measurement in the range of 10-1000 rpm with good linearity, and the error rate of rotation speed is less than 0.8%. Besides, the TRMS has an angle monitoring range of 360° and its resolution is 1.5° in bidirectional rotation. Finally, the applications of the designed TRMS and IMS prove the feasibility of self-powered rotary motion monitoring. This work further promotes the development of triboelectric sensors (TESs) in industrial application.

6.
ACS Nano ; 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33856770

RESUMO

Triboelectric nanogenerators (TENGs), which hold great promise for sustainably powering wearable electronics by harvesting distributed mechanical energy, are still severely limited by their unsatisfactory power density, small capacitance, and high internal impedance. Herein, a materials optimization strategy is proposed to achieve a high performance of TENGs and to lower the matching impedance simultaneously. A permittivity-tunable electret composite film, i.e., a thermoplastic polyurethane (TPU) matrix with polyethylene glycol (PEG) additives and polytetrafluoroethylene (PTFE) nanoparticle inclusions, is employed as the triboelectric layer. Through optimizing the dielectric constant of the composite, the injected charge density and internal capacitance of the TENG are significantly enhanced, thus synergistically boosting the output power and reducing the impedance of the TENG. The optimal output power reaches 16.8 mW at an external resistance of 200 kΩ, showing a 17.3 times enhancement in output power and a 90% decline in matching impedance. This work demonstrates a significant progress toward the materials optimization of a triboelectric generator for its practical commercialization.

7.
Anal Chem ; 93(13): 5468-5475, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33720699

RESUMO

Lipids play a critical role in cell membrane integrity, signaling, and energy storage. However, in-depth structural characterization of lipids is still challenging and not routinely possible in lipidomics experiments. Techniques such as collision-induced dissociation (CID) tandem mass spectrometry (MS/MS), ion mobility (IM) spectrometry, and ultrahigh-performance liquid chromatography are not yet capable of fully characterizing double-bond and sn-chain position of lipids in a high-throughput manner. Herein, we report on the ability to structurally characterize lipids using large-area triboelectric nanogenerators (TENG) coupled with time-aligned parallel (TAP) fragmentation IM-MS analysis. Gas-phase lipid epoxidation during TENG ionization, coupled to mobility-resolved MS3 via TAP IM-MS, enabled the acquisition of detailed information on the presence and position of lipid C═C double bonds, the fatty acyl sn-chain position and composition, and the cis/trans geometrical C═C isomerism. The proposed methodology proved useful for the shotgun lipidomics analysis of lipid extracts from biological samples, enabling the detailed annotation of numerous lipid isobars.

8.
Nat Commun ; 12(1): 1752, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741951

RESUMO

The charge transfer phenomenon of contact electrification even exists in the liquid-solid interface by a tiny droplet on the solid surface. In this work, we have investigated the contact electrification mechanism at the liquid-solid interface from the electronic structures at the atomic level. The electronic structures display stronger modulations by the outmost shell charge transfer via surface electrostatic charge perturbation than the inter-bonding-orbital charge transfer at the liquid-solid interface, supporting more factors being involved in charge transfer via contact electrification. Meanwhile, we introduce the electrochemical cell model to quantify the charge transfer based on the pinning factor to linearly correlate the charge transfer and the electronic structures. The pinning factor exhibits a more direct visualization of the charge transfer at the liquid-solid interface. This work supplies critical guidance for describing, quantifying, and modulating the contact electrification induced charge transfer systems in triboelectric nanogenerators in future works.

9.
ACS Nano ; 15(4): 7271-7278, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33733729

RESUMO

To improve automobile safety, identifying driver fatigue is considerably crucial because it is one of the main causes of traffic accidents. In this research, smart systems based on a triboelectric nanogenerator are designed, which can provide driver status monitoring and fatigue warning in real time. The smart system consists of a self-powered steering-wheel angle sensor (SSAS) and a signal processing unit. The SSAS, which comprises a stator, a rotor, and a sleeve, is mounted on the steering rod, and the electrodes are designed with a phase difference to improve the resolution of the sensor. The turning angle of the steering wheel operated by the driver is recorded by the SSAS; meanwhile, the number of rotations, the average angle, and other parameters in the driver's recorded data are analyzed by the signal processing unit from which a warning threshold for each parameter is determined. The system assesses the status of the driver in real-time by comparing these parameters and threshold values, and experimental results demonstrate that driver status is accurately judged. This work has important potential applications in the fields of traffic safety and intelligent driving.

10.
Adv Mater ; : e2004178, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33759259

RESUMO

In the new era of the Internet-of-Things, athletic big data collection and analysis based on widely distributed sensing networks are particularly important in the development of intelligent sports. Conventional sensors usually require an external power supply, with limitations such as limited lifetime and high maintenance cost. As a newly developed mechanical energy harvesting and self-powered sensing technology, the triboelectric nanogenerator (TENG) shows great potential to overcome these limitations. Most importantly, TENGs can be fabricated using wood, paper, fibers, and polymers, which are the most frequently used materials for sports. Recent progress on the development of TENGs for the field of intelligent sports is summarized. First, the working mechanism of TENG and its association with athletic big data are introduced. Subsequently, the development of TENG-based sports sensing systems, including smart sports facilities and wearable equipment is highlighted. At last, the remaining challenges and open opportunities are also discussed.

11.
ACS Appl Mater Interfaces ; 13(9): 11205-11214, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33645227

RESUMO

Equipping wearable electronics with special functions will endow them with more additional values and more comprehensive practical performance. Here, we report an ultraviolet (UV)-protective, self-cleaning, antibacterial, and self-powered all-nanofiber-based triboelectric nanogenerator (TENG) for mechanical energy harvesting and self-powered sensing, which is fabricated with Ag nanowires (NWs)/TPU nanofibers and the TiO2@PAN networks through a facile electrospinning method. Due to the added TiO2 nanoparticles (NPs), the TENG presents excellent UV-protective performance, including the ultraviolet protection factor (UPF) of ∼204, the transmittance of UVA (TUVA) of ∼0.0574%, and the transmittance of UVB (TUVB) ∼0.107%. Furthermore, under solar lighting for 25 min, most surface contamination can be degraded, and the decreased power output would be recovered. Owing to the coupled effects of TiO2 NPs and Ag NWs, the TENG shows excellent antibacterial activity against Staphylococcus aureus. Due to the micro-to-nano hierarchical porous structure, the all-nanofiber-based TENG can serve as self-powered pedometers for detecting and tracking human motion behaviors. As a multifunctional self-powered device, the TENG prompts various applications in the fields of micro/nanopower sources, human movement monitoring, and human-machine interfaces, potentially providing an alternative energy solution and a multifunctional interactive platform for the next-generation wearable electronics.

12.
Nat Commun ; 12(1): 1581, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707420

RESUMO

Low power electronics endowed with artificial intelligence and biological afferent characters are beneficial to neuromorphic sensory network. Highly distributed synaptic sensory neurons are more readily driven by portable, distributed, and ubiquitous power sources. Here, we report a contact-electrification-activated artificial afferent at femtojoule energy. Upon the contact-electrification effect, the induced triboelectric signals activate the ion-gel-gated MoS2 postsynaptic transistor, endowing the artificial afferent with the adaptive capacity to carry out spatiotemporal recognition/sensation on external stimuli (e.g., displacements, pressures and touch patterns). The decay time of the synaptic device is in the range of sensory memory stage. The energy dissipation of the artificial afferents is significantly reduced to 11.9 fJ per spike. Furthermore, the artificial afferents are demonstrated to be capable of recognizing the spatiotemporal information of touch patterns. This work is of great significance for the construction of next-generation neuromorphic sensory network, self-powered biomimetic electronics and intelligent interactive equipment.

13.
ACS Nano ; 15(3): 5478-5485, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33599489

RESUMO

With the excellent structural design, rotary triboelectric nanogenerator (R-TENG) is suitable for harvesting mechanical energy such as wind energy and water energy to build a self-powered electrochemical system for environmental science. The electrochemical performance has been greatly improved by using the pulsed direct-current (PDC) output of a TENG; however, a full-wave PDC (FW-PDC) is hardly realized in R-TENG devices due to existence of phase superposition. Here, a R-TENG with FW-PDC output is reported to perform a self-powered electro-Fenton system for enhancing the removal efficiency of levofloxacin (OFL). By adjusting the rotation center angle ratio between each rotator and stator unit, the phase superposition of R-TENG caused by multiple parallel electrodes can be effectively eliminated, thus achieving the desired FW-PDC output. Because of the reduced electrode passivation effect, the removal efficiency of OFL is improved by 30% under equal electric charges through using the designed R-TENG with FW-PDC output compared to traditional R-TENG. This study provides a promising methodology to improve the performance of self-powered electrochemical process for treating environment pollutions.

14.
ACS Nano ; 15(2): 2611-2623, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33533242

RESUMO

Long-distance walking with heavy loads is often needed when going hiking or for field rescue, which is prone to cumulative fatigue. There is also a great need for labor-saving and biomechanical energy harvesting in daily life for extended security and communication needs. Here, we report a load-suspended backpack for harvesting the wasted energy of human motion based on a triboelectric nanogenerator (TENG). Two elastomers are incorporated into the backpack to decouple the synchronous movement of the load and the human body, which results in little or no extra accelerative force. With such a design, through theoretical analysis and field experiments, the backpack can realize a reduction of 28.75 % in the vertical oscillation of the load and 21.08 % in the vertical force on the wearer, respectively. Meanwhile, the mechanical-to-electric energy conversion efficiency is modeled and calculated to be 14.02 % under normal walking conditions. The designed backpack has the merits of labor-saving and shock absorption as well as electricity generation, which has the promising potential to be a power source for small-scale wearable and portable electronics, GPS systems, and other self-powered health care sensors.

15.
ACS Nano ; 2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33428394

RESUMO

Fibrous energy-autonomy electronics are highly desired for wearable soft electronics, human-machine interfaces, and the Internet of Things. How to effectively integrate various functional energy fibers into them and realize versatile applications is an urgent need to be fulfilled. Here, a multifunctional coaxial energy fiber has been developed toward energy harvesting, energy storage, and energy utilization. The energy fiber is composed of an all fiber-shaped triboelectric nanogenerator (TENG), supercapacitor (SC), and pressure sensor in a coaxial geometry. The inner core is a fibrous SC by a green activation strategy for energy storage; the outer sheath is a fibrous TENG in single-electrode mode for energy harvesting, and the outer friction layer and inner layer (covered with Ag) constitute a self-powered pressure sensor. The electrical performances of each energy component are systematically investigated. The fibrous SC shows a length specific capacitance density of 13.42 mF·cm-1, good charging/discharging rate capability, and excellent cycling stability (∼96.6% retention). The fibrous TENG shows a maximum power of 2.5 µW to power an electronic watch and temperature sensor. The pressure sensor has a good enough sensitivity of 1.003 V·kPa-1 to readily monitor the real-time finger motions and work as a tactile interface. The demonstrated energy fibers have exhibited stable electrochemical and mechanical performances under mechanical deformation, which make them attractive for wearable electronics. The demonstrated soft and multifunctional coaxial energy fiber is also of great significance in a sustainable human-machine interactive system, intelligent robotic skin, security tactile switches, etc.

16.
Nat Commun ; 11(1): 6186, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273477

RESUMO

As a new-era of energy harvesting technology, the enhancement of triboelectric charge density of triboelectric nanogenerator (TENG) is always crucial for its large-scale application on Internet of Things (IoTs) and artificial intelligence (AI). Here, a microstructure-designed direct-current TENG (MDC-TENG) with rationally patterned electrode structure is presented to enhance its effective surface charge density by increasing the efficiency of contact electrification. Thus, the MDC-TENG achieves a record high charge density of ~5.4 mC m-2, which is over 2-fold the state-of-art of AC-TENGs and over 10-fold compared to previous DC-TENGs. The MDC-TENG realizes both the miniaturized device and high output performance. Meanwhile, its effective charge density can be further improved as the device size increases. Our work not only provides a miniaturization strategy of TENG for the application in IoTs and AI as energy supply or self-powered sensor, but also presents a paradigm shift for large-scale energy harvesting by TENGs.

17.
Nat Commun ; 11(1): 6207, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277501

RESUMO

Power dissipation is a fundamental issue for future chip-based electronics. As promising channel materials, two-dimensional semiconductors show excellent capabilities of scaling dimensions and reducing off-state currents. However, field-effect transistors based on two-dimensional materials are still confronted with the fundamental thermionic limitation of the subthreshold swing of 60 mV decade-1 at room temperature. Here, we present an atomic threshold-switching field-effect transistor constructed by integrating a metal filamentary threshold switch with a two-dimensional MoS2 channel, and obtain abrupt steepness in the turn-on characteristics and 4.5 mV decade-1 subthreshold swing (over five decades). This is achieved by using the negative differential resistance effect from the threshold switch to induce an internal voltage amplification across the MoS2 channel. Notably, in such devices, the simultaneous achievement of efficient electrostatics, very small sub-thermionic subthreshold swings, and ultralow leakage currents, would be highly desirable for next-generation energy-efficient integrated circuits and ultralow-power applications.

18.
ACS Nano ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33232122

RESUMO

It has been demonstrated that substantial electric power can be produced by a liquid-based triboelectric nanogenerator (TENG). However, the mechanisms regarding the electrification between a liquid and a solid surface remain to be extensively investigated. Here, the working mechanism of a droplet-TENG was proposed based on the study of its dynamic saturation process. Moreover, the charge-transfer mechanism at the liquid-solid interface was verified as the hybrid effects of electron transfer and ion adsorption by a simple but valid method. Thus, we proposed a model for the charge distribution at the liquid-solid interface, named Wang's hybrid layer, which involves the electron transfer, the ionization reaction, and the van der Waals force. Our work not only proves that TENG is a probe for investigating charge transfer at interface of all phases, such as solid-solid and liquid-solid, but also may have great significance to water energy harvesting and may revolutionize the traditional understanding of the liquid-solid interface used in many fields such as electrochemistry, catalysis, colloidal science, and even cell biology.

19.
Adv Mater ; : e2004290, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33174265

RESUMO

There is an increasing interest to develop a next generation of touch pads that require stretchability and biocompatibility to allow their integration with a human body, and even to mimic the self-healing behavior with fast functionality recovery upon damage. However, most touch pads are developed based on stiff and brittle electrodes with the lack of the important nature of self-healing. Polyzwitterion-clay nanocomposite hydrogels as a soft, stretchable, and transparent ionic conductor with transmittance of 98.8% and fracture strain beyond 1500% are developed, which can be used as a self-healing human-machine interactive touch pad with pressure-sensitive adhesiveness on target substrates. A surface-capacitive touch system is adopted to sense a touched position. Finger positions are perceived during both point-by-point touch and continuous moving. Hydrogel touch pads are adhered to curved or flat insulators, with the high-resolution and self-healable input functions demonstrated by drawing, writing, and playing electronic games.

20.
ACS Nano ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33210533

RESUMO

The Triboelectric Nanogenerator has demonstrated broad applications in energy, environmental, and electronic fields, as well as huge potential in the mechanism study of contact electrification, since 2012. Herein, we employed a Triboelectric Nanogenerator working in vertical contact-separation mode to study the electrification performance of the polymer under redox atmosphere. The results show that the electron-withdrawing ability of the polymer is weakened with increasing O3 concentration. Considering that O3 is typically one of the strongest oxidants, we further studied the electrification performance under H2, CO, and O2 atmosphere. It is found that the electron-withdrawing ability was predictably weakened under O2 atmosphere similar to the case of O3. On the contrary, the electron-withdrawing ability was enhanced under H2 and CO atmosphere. Accordingly, a theoretical mechanism involving the highest occupied surface state level is proposed to explain the effect of redox atmosphere on contact electrification. These results clarify that contact electrification can be varied by redox agents. Conversely, it also suggests the possibility to manipulate the redox reactions through the modification of contact electrification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...