Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.430
Filtrar
1.
Anal Chem ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36930460

RESUMO

N6-Methyladenosine (m6A) has emerged as a key post-transcriptional regulator in mRNA metabolism, and its dysregulation is associated with multiple human diseases. Herein, we construct a single-molecule fluorescent biosensor for antibody-free detection of locus-specific m6A in cancer cells and tissues. A 5'-biotinylated capture probe and a 3'-hydroxylated assistant probe are designed for the recognition of specific m6A-mRNA. The m6A-sensitive endoribonuclease MazF can identify and cleave the unmethylated mRNA, and the retained intact m6A-mRNA can hybridize with assistant probes and capture probes to achieve sandwich hybrids. The sandwich hybrids are immobilized on magnetic beads (MBs) to initiate the terminal deoxynucleotidyl transferase (TdT)-assisted polymerization, facilitating the continuous incorporation of Cy5-dATP to form long Cy5-polyA tails for the production of an on-bead amplified fluorescence signal. After magnetic separation and exonuclease digestion, numerous Cy5 fluorophores are released and subsequently measured by single-molecule detection. Especially, this biosensor is implemented simply and isothermally without the involvement of either radiolabeling or m6A-specific antibody. Moreover, this biosensor shows ultrahigh sensitivity with a detection limit of 2.24 × 10-17 M, and it can discriminate a 0.01% m6A level from a large pool of coexisting counterparts. Furthermore, this biosensor can be used for monitoring cellular m6A-mRNA expression and differentiating the m6A level in the breast cancer patient tissues from that in the healthy person tissues, providing a new avenue for clinical diagnosis and epitranscriptomic research.

2.
Sci Rep ; 13(1): 4303, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922570

RESUMO

To investigate the prognostic value of systemic inflammation and insulin resistance in women with breast cancer with different body mass index (BMI). This multicenter, prospective study included 514 women with breast cancer. Multivariate survival analysis showed that patients with high C-reactive protein (CRP), high CRP to albumin ratio (CAR), high lymphocyte to CRP ratio (LCR), high low-density lipoprotein cholesterol to high-density lipoprotein cholesterol ratio (LHR), and high triglyceride to high-density lipoprotein cholesterol ratio (TG/HDL-c) were significantly associated with worse prognosis. The mortality rate of patients with both high CAR and high LHR or both low LCR and high LHR were 3.91-fold or 3.89-fold higher than patients with both low CAR and low LHR or both high LCR and low LHR, respectively. Furthermore, the combination of LCR and LHR significantly predicted survival in patients within the high BMI group. The CRP, CAR, LCR, LHR, and TG/HDL-c were associated with poor survival in women with breast cancer. The combination of CAR and LHR or LCR and LHR could better predict the prognostic outcomes of women with breast cancer, while the combination of LCR and LHR could better predict the prognosis of those patients with overweight or obese patients.

3.
Front Nutr ; 10: 1131380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925953

RESUMO

Background: In tea plantations with high-pH (pH > 6.5) in Northern China, tea plants are prone to yellowing disease, albinism, and reductions in components that contribute to plant quality, which affect the scale and rate of tea plantation development in Northern China. Methods: To investigate the potential causes of these issues, Camellia sinensis cv. Pingyang Tezao and Camellia sinensis cv. Ruixue were planted in Shouguang city (a high-pH area, soil pH > 6.5) and Rizhao city (a normal-pH area, soil pH is 4.5-5.5), respectively; differences in growth morphology, pigment content, cell structure, quality-determining components, and element content of the two varieties in the two areas were analyzed. Results: The results showed that tea leaves planted in Shouguang had varying degrees of yellowing disease and albinism; the pigment content in both varieties was significantly lower when planted in Shouguang compared with Rizhao. The cell structure was severely damaged and the main quality-determining components were decreased. Nitrogen (N), phosphorus (P), potassium (K), zinc (Zn), copper (Cu) and manganese (Mn) contents in the leaves of the two tea plant varieties were significantly lower when planted in Shouguang compared with those in Rizhao; the levels of these elements in Shouguang soil were significantly higher than in Rizhao soil. Calcium (Ca) contents in Shouguang soil was 9.90 times higher than that of Rizhao soil. Conclusions: We conclude that the soil in high-pH areas hindered tea plant uptake of N, Zn, Cu, and Mn, which had a detrimental effect on chloroplasts and reductions in chlorophyll synthesis, contributing to yellowing disease and albinism. In addition, excessive calcium (Ca) in Shouguang soil was also an important contributor to these negative effects. High-pH soil hindered tea plant uptake of P and K, resulting in reductions in tea polyphenols, amino acids, and other major quality components.

4.
Carbohydr Polym ; 299: 120200, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36876811

RESUMO

It has been reported that glycogen in Escherichia coli has two structural states, that is, fragility and stability, which alters dynamically. However, molecular mechanisms behind the structural alterations are not fully understood. In this study, we focused on the potential roles of two important glycogen degradation enzymes, glycogen phosphorylase (glgP) and glycogen debranching enzyme (glgX), in glycogen structural alterations. The fine molecular structure of glycogen particles in Escherichia coli and three mutants (ΔglgP, ΔglgX and ΔglgP/ΔglgX) were examined, which showed that glycogen in E. coli ΔglgP and E. coli ΔglgP/ΔglgX were consistently fragile while being consistently stable in E. coli ΔglgX, indicating the dominant role of GP in glycogen structural stability control. In sum, our study concludes that glycogen phosphorylase is essential in glycogen structural stability, leading to molecular insights into structural assembly of glycogen particles in E. coli.


Assuntos
Sistema da Enzima Desramificadora do Glicogênio , Glicogenólise , Escherichia coli , Citoplasma , Glicogênio
5.
Zhen Ci Yan Jiu ; 48(2): 118-24, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36858406

RESUMO

OBJECTIVE: To observe the effect of acupuncture on the expression of connexin 43 (Cx43), glial fibrillary acidic protein (GFAP), interferon-γ (IFN-γ) in the trigeminal spinal nucleus (TNC) of rats with migraine, so as to explore its mechanisms underlying amelioration of migraine. METHODS: A total of 44 SD rats were randomly divided into control, model, acu-puncture, and sham acupuncture groups (n=11 in each group). Acupuncture was applied to bilateral "Shuaigu"(GB8) and "Yanglingquan"(GB34) or non-acupoint Ⅰ (the spot about 10 mm superior to the iliac spine and 20 mm lateral to the post-median line) and non-acupoint Ⅱ (behind the iliac spine, the ending-spot of the posterior superior iliac spine at the muscles) on both sides for 20 min, once daily for 9 days. Paw withdrawal latency (mechanical pain threshold,PWMT) and thermal tail flick latency (TFL) were measured using a VonFrey detector and photothermal tail pain meter, respectively. The content of IFN-γ of TNC tissue was detected by ELISA. The expression levels of Cx43 and IFN-γ proteins of TNC tissue were detected by Western blot. The immunofluorescence dual labeling method was used to detect the positive expression of GFAP and Cx43, IFN-γR and NeuN in TNC tissue, for displaying the activity of Cx43 in astrocytes and IFN-γ in neurons, respectively. RESULTS: Compared with the control group, both PWMT and TFL at 3, 5, 7 and 9 days after modeling were significantly decreased (P<0.01), while the expression of Cx43 and IFN-γ proteins, the immunofluorescence intensity of GFAP, Cx43, IFN-γR, and the content of IFN-γ were considerably up-regulated in the model group (P<0.01). In comparison with the model group, both PWMT and TFL at 3, 5, 7 and 9 days after modeling were obviously increased (P<0.01), whereas the expression of Cx43 and IFN-γ proteins, the immunofluorescence intensity of GFAP, Cx43, IFN-γR, and the content of IFN-γ in the acupuncture group, as well as the protein expression of IFN-γR in the sham acupuncture group were also remarkably decreased (P<0.05, P<0.01). The effect of acupuncture was significantly superior to that of sham acupuncture in down-regulating the expression of Cx43 and IFN-γ proteins, and the immunofluorescence intensity of GFAP, Cx43, and IFN-γR (P<0.05, P<0.01). Immunofluorescence dual labeling outcomes showed that in the model group, a large number of GFAP and Cx43 co-expressed astrocytes were found, and the cell body and protrusion of GFAP-labelled astrocytes were evidently increased, and Cx43 was mainly expressed on the surface of astrocyte membrane and the protrusion site, and the proportion of IFN-γR and NeuN co-expressing neurons in the model group was significantly increased, suggesting an activation of astrocytes and neurons after modeling. Whereas in the acupuncture group, the bright green clustered particles on the cell membrane and protrusion of astrocytes, and the proportion of IFN-γR and NeuN co-expressing neurons were significantly reduced, suggesting a suppression of activities of Cx43, astrocytes and neurons and IFN-γ release from TNC after acupuncture intervention. CONCLUSION: Acupuncture can relieve the pain response in rats with migraine, which may be associa-ted with its functions in inhibiting the expression of Cx43 and activation of astrocytes and neurons, and reducing release of pro-inflammatory factor IFN-γ in TNC.


Assuntos
Terapia por Acupuntura , Transtornos de Enxaqueca , Animais , Ratos , Ratos Sprague-Dawley , Conexina 43 , Astrócitos , Punção Espinal , Dor , Neurônios
6.
Sheng Li Xue Bao ; 75(1): 59-68, 2023 Feb 25.
Artigo em Chinês | MEDLINE | ID: mdl-36859835

RESUMO

The purpose of this study was to explore the effect and mechanism of dihydromyricetin (DHM) on Parkinson's disease (PD)-like lesions in type 2 diabetes mellitus (T2DM) rats. The T2DM model was established by feeding Sprague Dawley (SD) rats with high-fat diet and intraperitoneal injection of streptozocin (STZ). The rats were intragastrically administered with DHM (125 or 250 mg/kg per day) for 24 weeks. The motor ability of the rats was measured by balance beam experiment, the changes of dopaminergic (DA) neurons and the expression of autophagy initiation related protein ULK1 in the midbrains of the rats were detected by immunohistochemistry, and the protein expression levels of α-synuclein (α-syn), tyrosine hydroxylase (TH), as well as AMPK activation level, in the midbrains of the rats were detected by Western blot. The results showed that, compared with normal control, the rats with long-term T2DM exhibited motor dysfunction, increased α-syn aggregation, down-regulated TH protein expression, decreased number of DA neurons, declined activation level of AMPK, and significantly down-regulated ULK1 expression in the midbrain. DHM (250 mg/kg per day) treatment for 24 weeks significantly improved the above PD-like lesions, increased AMPK activity, and up-regulated ULK1 protein expression in T2DM rats. These results suggest that DHM may improve PD-like lesions in T2DM rats by activating AMPK/ULK1 pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Doença de Parkinson , Ratos , Animais , Ratos Sprague-Dawley , Proteínas Quinases Ativadas por AMP , Proteína Homóloga à Proteína-1 Relacionada à Autofagia
7.
Front Microbiol ; 14: 1126189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860485

RESUMO

Shift of ingestive behavior is an important strategy for animals to adapt to change of the environment. We knew that shifts in animal dietary habits lead to changes in the structure of the gut microbiota, but we are not sure about if changes in the composition and function of the gut microbiota respond to changes in the nutrient intake or food items. To investigate how animal feeding strategies affect nutrient intakes and thus alter the composition and digestion function of gut microbiota, we selected a group of wild primate group for the study. We quantified their diet and macronutrients intake in four seasons of a year, and instant fecal samples were analyzed by high-throughput sequencing of 16S rRNA and metagenomics. These results demonstrated that the main reason that causes seasonal shifts of gut microbiota is the macronutrient variation induced by seasonal dietary differences. Gut microbes can help to compensate for insufficient macronutrients intake of the host through microbial metabolic functions. This study contributes to a deeper understanding of the causes of seasonal variation in host-microbial variation in wild primates.

8.
Sci Adv ; 9(9): eabq8225, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36857458

RESUMO

Up to 75% of bladder cancer patients suffer from recurrence due to postoperative tumor implantation. However, clinically used Bacillus Calmette-Guerin (BCG) treatment failed to inhibit the recurrence. Here, we report a bispecific glycopeptide (bsGP) that simultaneously targets CD206 on tumor-associated macrophages (TAMs) and CXCR4 on tumor cells. bsGP repolarizes protumoral M2-like TAMs to antitumor M1-like that mediated cytotoxicity and T cell recruitment. Meanwhile, bsGP is cleaved by the MMP-2 enzyme to form nanostructure for the long-term inhibition of CXCR4 downstream signaling, resulting in reduced tumor metastasis and promoted T cell infiltration. In orthotopic bladder tumor models, bsGP reduced the postoperative recurrence rate to 22%. In parallel, the recurrence rates of 89 and 78% were treated by doxycycline and BCG used in clinic, respectively. Mechanistic studies reveal that bsGP reduces the matrix microenvironment barrier, increasing the spatially redirected CD8+ T cells to tumor cells. We envision that bis-targeting CD206 and CXCR4 may pave the way to inhibit tumor metastasis and recurrence.


Assuntos
Microambiente Tumoral , Neoplasias da Bexiga Urinária , Humanos , Vacina BCG , Linfócitos T CD8-Positivos , Recidiva Local de Neoplasia , Glicopeptídeos
9.
Zhongguo Zhong Yao Za Zhi ; 48(3): 752-761, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872239

RESUMO

This study explores the effect of apigenin(APG), oxymatrine(OMT), and APG+OMT on the proliferation of non-small cell lung cancer cell lines and the underlying mechanisms. Cell counting kit-8(CCK-8) assay was used to detect the vitality of A549 and NCI-H1975 cells, and colony formation assay to evaluate the colony formation ability of the cells. EdU assay was employed to examine the proliferation of NCI-H1975 cells. RT-qPCR and Western blot were performed to detect the mRNA and protein expression of PLOD2. Molecular docking was carried out to explore the direct action ability and action sites between APG/OMT and PLOD2/EGFR. Western blot was used to study the expression of related proteins in EGFR pathway. The viability of A549 and NCI-H1975 cells was inhibited by APG and APG+OMT at 20, 40, and 80 µmol·L~(-1) in a dose-dependent manner. The colony formation ability of NCI-H1975 cells was significantly suppressed by APG and APG+OMT. The mRNA and protein expression of PLOD2 was significantly inhibited by APG and APG+OMT. In addition, APG and OMT had strong binding activity with PLOD2 and EGFR. In APG and APG+OMT groups, the expression of EGFR and proteins in its downstream signaling pathways was significantly down-regulated. It is concluded that APG in combination with OMT could inhibit non-small lung cancer, and the mechanism may be related to EGFR and its downstream signaling pathways. This study lays a new theoretical basis for the clinical treatment of non-small cell lung cancer with APG in combination with OMT and provides a reference for further research on the anti-tumor mechanism of APG in combination with OMT.


Assuntos
Alcaloides , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Apigenina , Simulação de Acoplamento Molecular , Quinolizinas , RNA Mensageiro , Receptores ErbB
10.
Anal Bioanal Chem ; 2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867197

RESUMO

Viruses are changing the biosensing and biomedicine landscape due to their multivalency, orthogonal reactivities, and responsiveness to genetic modifications. As the most extensively studied phage model for constructing a phage display library, M13 phage has received much research attention as building blocks or viral scaffolds for various applications including isolation/separation, sensing/probing, and in vivo imaging. Through genetic engineering and chemical modification, M13 phages can be functionalized into a multifunctional analysis platform with various functional regions conducting their functionality without mutual disturbance. Its unique filamentous morphology and flexibility also promoted the analytical performance in terms of target affinity and signal amplification. In this review, we mainly focused on the application of M13 phage in the analytical field and the benefit it brings. We also introduced several genetic engineering and chemical modification approaches for endowing M13 with various functionalities, and summarized some representative applications using M13 phages to construct isolation sorbents, biosensors, cell imaging probes, and immunoassays. Finally, current issues and challenges remaining in this field were discussed and future perspectives were also proposed.

11.
Huan Jing Ke Xue ; 44(3): 1368-1377, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922198

RESUMO

The original ecological footprint model of water resources was improved here to explore the rational policy of water resources development and utilization. Aiming to address the problems of high complexity, weak applicability, and insufficient systematicness and dynamics of the existing water resources ecological footprint model, the grey water footprint was introduced into the model to quantify the water for decontamination. In the calculation of the water resources ecological footprint index, the rainwater collection project, seawater desalination, and water resources regeneration, unconventional water sources were considered, and when combined with the system dynamics simulation technology, the SD model of water resources sustainable utilization in China was established. We carried out research on the regulation and control of sustainable utilization of water resources in China. The results showed that the development and utilization of water resources in China remained within the ecological carrying capacity as a whole from 2000 to 2017, and the development of water resources still had potential, but the supply and demand of water resources were unbalanced. Given this, from the perspective of throttling, open-source, and pollution control, six control schemes for sustainable utilization of water resources in China were set up, including the continuation of the current situation, green throttling, pollution control, strict planning for water source development, and comprehensive treatment. Among them, the comprehensive coordination plan for 2018-2050 could properly solve the problem of water resources supply and demand under the conditions of meeting the ecological sustainability of water resources and reasonable water resources load and was the best regulation plan to realize the sustainable utilization of water resources in China. At present, the development of water resources in China lags, which does not match the growth rate of social and economic development on water resources consumption. It is necessary to further strengthen the efforts of open-source, water-saving, and pollution control based on the original policies, so as to alleviate the ecological stress of water resources.

12.
Huan Jing Ke Xue ; 44(3): 1768-1779, 2023 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-36922237

RESUMO

To clarify the effects of non-rhizosphere/rhizosphere soil functional microbes (nitrifiers, denitrifiers, and phosphorus-solubilizing microorganisms) on lemon yield and quality, the lemon fruit and non-rhizosphere/rhizosphere soil were selected as subjects. To explore the correlation between non-rhizosphere/rhizosphere soil functional microbes and lemon yield and quality under a chemical fertilizer reduction substitute with organic fertilizer, traditional fruit quality determination and multiple molecular techniques were used. The results showed that:① 30% chemical fertilizer reduction substitute with organic fertilizer increased the nitrification intensity and phosphatase activity but effectively controlled the denitrifying enzyme activity. ② The chemical fertilizer reduction substitute with organic fertilizer significantly decreased the abundances of nitrifiers and nirS/nirK-harboring denitrifiers and significantly increased the abundances of nosZ-harboring denitrifier and phoD-harboring microorganisms. However, the diversities of functional microbial community structure did not have clear regularity under chemical fertilizer reduction substitute with organic fertilizer. ③ Compared with that under the application of chemical fertilizer and organic fertilizer alone, lemon yield and quality were the highest under the 30% reduction of chemical fertilizer substitute with organic fertilizer. ④ Nitrogen and its related microbes significantly affected lemon yield through internal and external quality. Phosphorus and its related microbes affected lemon yield mainly through internal quality. In addition, the influence factors of non-rhizosphere soil and rhizosphere soil on lemon intrinsic quality were obviously different. Altogether, these results showed that the 30% reduction of chemical fertilizer substitute with organic fertilizer significantly affected soil nitrogen and phosphorus functional microorganisms and further improved lemon yield and quality.

13.
Front Nutr ; 10: 1062117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923698

RESUMO

Purpose: Previous studies have shown that both hand grip strength (HGS) and the modified Glasgow Prognostic Score (mGPS) are associated with poor clinical outcomes in patients with liver cancer. In spite of this, no relevant studies have been conducted to determine whether the combination of HGS and mGPS can predict the prognosis of patients with liver cancer. Accordingly, this study sought to explore this possibility. Methods: This was a multicenter study of patients with liver cancer. Based on the optimal HGS cutoff value for each sex, we determined the HGS cutoff values. The patients were divided into high and low HGS groups based on their HGS scores. An mGPS of 0 was defined as low mGPS, whereas scores higher than 0 were defined as high mGPS. The patients were combined into HGS-mGPS groups for the prediction of survival. Survival analysis was performed using Kaplan-Meier curves. A Cox regression model was designed and adjusted for confounders. To evaluate the nomogram model, receiver operating characteristic curves and calibration curves were used. Results: A total of 504 patients were enrolled in this study. Of these, 386 (76.6%) were men (mean [SD] age, 56.63 [12.06] years). Multivariate analysis revealed that patients with low HGS and high mGPS had a higher risk of death than those with neither low HGS nor high mGPS (hazard ratio [HR],1.50; 95% confidence interval [CI],1.14-1.98; p = 0.001 and HR, 1.55; 95% CI, 1.14-2.12, p = 0.001 respectively). Patients with both low HGS and high mGPS had 2.35-fold increased risk of death (HR, 2.35; 95% CI, 1.52-3.63; p < 0.001). The area under the curve of HGS-mGPS was 0.623. The calibration curve demonstrated the validity of the HGS-mGPS nomogram model for predicting the survival of patients with liver cancer. Conclusion: A combination of low HGS and high mGPS is associated with poor prognosis in patients with liver cancer. The combination of HGS and mGPS can predict the prognosis of liver cancer more accurately than HGS or mGPS alone. The nomogram model developed in this study can effectively predict the survival outcomes of liver cancer.

14.
Neural Regen Res ; 18(9): 1999-2004, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36926725

RESUMO

Animal experiments have shown that injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can promote recovery from spinal cord injury. To investigate whether injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells can be used to treat spontaneous intracerebral hemorrhage, this non-randomized phase I clinical trial recruited patients who met the inclusion criteria and did not meet the exclusion criteria of spontaneous intracerebral hemorrhage treated in the Characteristic Medical Center of Chinese People's Armed Police Force from May 2016 to December 2020. Patients were divided into three groups according to the clinical situation and patient benefit: control (n = 18), human umbilical cord-derived mesenchymal stem cells (n = 4), and combination (n = 8). The control group did not receive any transplantation. The human umbilical cord-derived mesenchymal stem cells group received human umbilical cord-derived mesenchymal stem cell transplantation. The combination group received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells. Patients who received injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells had more remarkable improvements in activities of daily living and cognitive function and smaller foci of intracerebral hemorrhage-related encephalomalacia. Severe adverse events associated with cell transplantation were not observed. Injectable collagen scaffold with human umbilical cord-derived mesenchymal stem cells appears to have great potential treating spontaneous intracerebral hemorrhage.

15.
Small ; : e2300060, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36929045

RESUMO

Nanoscale drug carriers play a crucial role in reducing side effects of chemotherapy drugs. However, the mononuclear phagocyte system (MPS) and the drug protonation after nanoparticles (NPs) burst release still limit the drug delivery efficiency. In this work, a self-disguised Nanospy is designed to overcome this problem. The Nanospy is composed of: i) poly (lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG) loading doxorubicin is the core structure of the Nanospy. ii) CD47 mimic peptides (CD47p) is linked to NPs which conveyed the "don't eat me" signal. iii) 4-(2-aminoethyl) benzenesulfonamide (AEBS) as the inhibitor of Carbonic anhydrase IX (CAIX) linked to NPs. Briefly, when the Nanospy circulates in the bloodstream, CD47p binds to the regulatory protein α (SIRPα) on the surface of macrophages, which causes the Nanospy escapes from phagocytosis. Subsequently, the Nanospy enriches in tumor and the AEBS reverses the acidic microenvironment of tumor. Due to above characteristics, the Nanospy reduces liver macrophage phagocytosis by 25% and increases tumor in situ DOX concentration by 56% compared to PLGA@DOX treatment. In addition, the Nanospy effectively inhibits tumor growth with a 63% volume reduction. This work presents a unique design to evade the capture of MPS and overcomes the influence of acidic tumor microenvironment (TME) on weakly alkaline drugs.

16.
Adv Healthc Mater ; : e2203118, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36929289

RESUMO

Owing to the serious clinical side effects of intravenous Taxol® , an oral chemotherapeutic strategy is expected to be promising for paclitaxel (PTX) delivery. However, its poor solubility and permeability, high first-pass metabolism, and gastrointestinal (GI) toxicity need to be overcome. A triglyceride (TG)-like prodrug strategy facilitates oral drug delivery by bypassing liver metabolism. However, the effect of fatty acids (FAs) in sn-1,3 on the oral absorption of prodrugs remains unclear. Herein, we explored a series of TG-mimetic prodrugs of PTX with different carbon chain lengths and degrees of unsaturation of FAs at the sn-1,3 position in an attempt to enhance oral antitumor effect and to guide the design of TG-like prodrugs. Interestingly, the different FA lengths exhibited great influence on in vitro intestinal digestion behavior, lymph transport efficiency, and up to 4-fold differences in plasma pharmacokinetics. The prodrug with long-chain FAs showed a more effective antitumor effect, whereas the degree of unsaturation had a negligible impact. Our findings illustrated how FAs structures affect the oral delivery efficiency of TG-like PTX prodrugs and thus provide a theoretical basis for their rational design. This article is protected by copyright. All rights reserved.

17.
Nucleic Acids Res ; 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36929421

RESUMO

Normal erythropoiesis requires the precise regulation of gene expression patterns, and transcription cofactors play a vital role in this process. Deregulation of cofactors has emerged as a key mechanism contributing to erythroid disorders. Through gene expression profiling, we found HES6 as an abundant cofactor expressed at gene level during human erythropoiesis. HES6 physically interacted with GATA1 and influenced the interaction of GATA1 with FOG1. Knockdown of HES6 impaired human erythropoiesis by decreasing GATA1 expression. Chromatin immunoprecipitation and RNA sequencing revealed a rich set of HES6- and GATA1-co-regulated genes involved in erythroid-related pathways. We also discovered a positive feedback loop composed of HES6, GATA1 and STAT1 in the regulation of erythropoiesis. Notably, erythropoietin (EPO) stimulation led to up-regulation of these loop components. Increased expression levels of loop components were observed in CD34+ cells of polycythemia vera patients. Interference by either HES6 knockdown or inhibition of STAT1 activity suppressed proliferation of erythroid cells with the JAK2V617F mutation. We further explored the impact of HES6 on polycythemia vera phenotypes in mice. The identification of the HES6-GATA1 regulatory loop and its regulation by EPO provides novel insights into human erythropoiesis regulated by EPO/EPOR and a potential therapeutic target for the management of polycythemia vera.

18.
Org Lett ; 25(10): 1673-1677, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36880593

RESUMO

A photoredox/nickel dual catalytic protocol for the regioselective three-component carboacylation of alkenes with tertiary and secondary alkyltrifluoroborates as well as acyl chlorides is described. This redox-neutral protocol can be applied to the rapid synthesis of ketones with high diversity and complexity via a radical relay process. Many functional groups, allowing for various commercially available acyl chlorides, alkyltrifluoroborates, and alkenes, are tolerated under these mild conditions.

19.
Phytochemistry ; 209: 113621, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36893826

RESUMO

The phytochemical investigation of the EtOAc extract from the aerial parts of Isodon eriocalyx afforded seventeen diterpenoids, including eight undescribed compounds. Eriocalyxins H-L have unique structural characteristics featuring a 5-epi-ent-kaurane diterpenoid scaffold with eriocalyxins H-K also possess an unusual 6,11-epoxyspiro-lactone ring while eriocalyxin L, a 1,7:3,20-diepoxy-ent kaurene, features an 1,7-oxygen linkage. The structures of these compounds were elucidated by spectroscopic data interpretation, and the absolute configurations of eriocalyxins H, I, L, and M were confirmed by single-crystal X-ray diffraction. The isolates were screened for their inhibitory activities against VCAM-1 and ICAM-1 at 5 µM. While eriocalyxin O, coetsoidin A and laxiflorin P were found to significantly inhibit both VCAM-1 and ICAM-1, 8 (17),13-ent-labdadien-15 â†’ 16-lactone-19-oic acid displayed evidently inhibitory effect against ICAM-1.

20.
Insect Biochem Mol Biol ; 155: 103929, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36906046

RESUMO

The role of the epigenome in phenotypic plasticity is unclear presently. Here we used a multiomics approach to explore the nature of the epigenome in developing honey bee (Apis mellifera) workers and queens. Our data clearly showed distinct queen and worker epigenomic landscapes during the developmental process. Differences in gene expression between workers and queens become more extensive and more layered during the process of development. Genes known to be important for caste differentiation were more likely to be regulated by multiple epigenomic systems than other differentially expressed genes. We confirmed the importance of two candidate genes for caste differentiation by using RNAi to manipulate the expression of two genes that differed in expression between workers and queens were regulated by multiple epigenomic systems. For both genes the RNAi manipulation resulted in a decrease in weight and fewer ovarioles of newly emerged queens compared to controls. Our data show that the distinct epigenomic landscapes of worker and queen bees differentiate during the course of larval development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...