Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(17)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875599

RESUMO

Archaeological and paleoecological evidence shows that by 10,000 BCE, all human societies employed varying degrees of ecologically transformative land use practices, including burning, hunting, species propagation, domestication, cultivation, and others that have left long-term legacies across the terrestrial biosphere. Yet, a lingering paradigm among natural scientists, conservationists, and policymakers is that human transformation of terrestrial nature is mostly recent and inherently destructive. Here, we use the most up-to-date, spatially explicit global reconstruction of historical human populations and land use to show that this paradigm is likely wrong. Even 12,000 y ago, nearly three quarters of Earth's land was inhabited and therefore shaped by human societies, including more than 95% of temperate and 90% of tropical woodlands. Lands now characterized as "natural," "intact," and "wild" generally exhibit long histories of use, as do protected areas and Indigenous lands, and current global patterns of vertebrate species richness and key biodiversity areas are more strongly associated with past patterns of land use than with present ones in regional landscapes now characterized as natural. The current biodiversity crisis can seldom be explained by the loss of uninhabited wildlands, resulting instead from the appropriation, colonization, and intensifying use of the biodiverse cultural landscapes long shaped and sustained by prior societies. Recognizing this deep cultural connection with biodiversity will therefore be essential to resolve the crisis.

3.
5.
Trends Ecol Evol ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33213887

RESUMO

We present the results from our 12th annual horizon scan of issues likely to impact biological conservation in the future. From a list of 97 topics, our global panel of 25 scientists and practitioners identified the top 15 issues that we believe society may urgently need to address. These issues are either novel in the biological conservation sector or represent a substantial positive or negative step-change in impact at global or regional level. Six issues, such as coral reef deoxygenation and changes in polar coastal productivity, affect marine or coastal ecosystems and seven relate to human and ecosystem-level responses to climate change. Identification of potential forthcoming issues for biological conservation may enable increased preparedness by researchers, practitioners, and decision-makers.

7.
Nature ; 586(7828): 217-227, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028996

RESUMO

Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.

9.
Conserv Biol ; 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33047846

RESUMO

Species that cannot adapt or keep pace with a changing climate are likely to need human intervention to shift to more suitable climates. While hundreds of articles mention using translocation as a climate-change adaptation tool, in practice, assisted migration as a conservation action remains rare, especially for animals. This is likely due to concern over introducing species to places where they may become invasive. However, there are other barriers to consider, such as time-frame mismatch, sociopolitical, knowledge and uncertainty barriers to conservationists adopting assisted migration as a go-to strategy. We recommend the following to advance assisted migration as a conservation tool: attempt assisted migrations at small scales, translocate species with little invasion risk, adopt robust monitoring protocols that trigger an active response, and promote political and public support.

10.
Nat Commun ; 11(1): 4563, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917882

RESUMO

Land free of direct anthropogenic disturbance is considered essential for achieving biodiversity conservation outcomes but is rapidly eroding. In response, many nations are increasing their protected area (PA) estates, but little consideration is given to the context of the surrounding landscape. This is despite the fact that structural connectivity between PAs is critical in a changing climate and mandated by international conservation targets. Using a high-resolution assessment of human pressure, we show that while ~40% of the terrestrial planet is intact, only 9.7% of Earth's terrestrial protected network can be considered structurally connected. On average, 11% of each country or territory's PA estate can be considered connected. As the global community commits to bolder action on abating biodiversity loss, placement of future PAs will be critical, as will an increased focus on landscape-scale habitat retention and restoration efforts to ensure those important areas set aside for conservation outcomes will remain (or become) connected.

11.
Nat Commun ; 11(1): 4174, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873789

RESUMO

Renewable energy production is necessary to halt climate change and reverse associated biodiversity losses. However, generating the required technologies and infrastructure will drive an increase in the production of many metals, creating new mining threats for biodiversity. Here, we map mining areas and assess their spatial coincidence with biodiversity conservation sites and priorities. Mining potentially influences 50 million km2 of Earth's land surface, with 8% coinciding with Protected Areas, 7% with Key Biodiversity Areas, and 16% with Remaining Wilderness. Most mining areas (82%) target materials needed for renewable energy production, and areas that overlap with Protected Areas and Remaining Wilderness contain a greater density of mines (our indicator of threat severity) compared to the overlapping mining areas that target other materials. Mining threats to biodiversity will increase as more mines target materials for renewable energy production and, without strategic planning, these new threats to biodiversity may surpass those averted by climate change mitigation.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais/estatística & dados numéricos , Mineração/estatística & dados numéricos , Energia Renovável/efeitos adversos , Análise Espacial
12.
Nat Ecol Evol ; 4(10): 1377-1384, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778752

RESUMO

Tropical forests vary in composition, structure and function such that not all forests have similar ecological value. This variability is caused by natural and anthropogenic disturbance regimes, which influence the ability of forests to support biodiversity, store carbon, mediate water yield and facilitate human well-being. While international environmental agreements mandate protecting and restoring forests, only forest extent is typically considered, while forest quality is ignored. Consequently, the locations and loss rates of forests of high ecological value are unknown and coordinated strategies for conserving these forests remain undeveloped. Here, we map locations high in forest structural integrity as a measure of ecological quality on the basis of recently developed fine-resolution maps of three-dimensional forest structure, integrated with human pressure across the global moist tropics. Our analyses reveal that tall forests with closed canopies and low human pressure typical of natural conditions comprise half of the global humid or moist tropical forest estate, largely limited to the Amazon and Congo basins. Most of these forests have no formal protection and, given recent rates of loss, are at substantial risk. With the rapid disappearance of these 'best of the last' forests at stake, we provide a policy-driven framework for their conservation and restoration, and recommend locations to maintain protections, add new protections, mitigate deleterious human impacts and restore forest structure.

13.
Conserv Biol ; 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32852067

RESUMO

Indigenous Peoples' lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition within Indigenous Peoples' lands globally remains largely unknown. Here, we provide the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands by using area of habitat data for 4,460 IUCN-assessed mammal species. We estimated that 2,175 species (49%) have ≥ 10% of their ranges in Indigenous Peoples' lands, and 646 species (14%) have > half of their ranges within these lands. For the threatened species assessed, 413 (41%) occur in Indigenous Peoples' lands. We also found that 935 mammal species (of which 131 are threatened with extinction) have ≥ 10% of their range in Indigenous Peoples' lands that have low human pressure. This analysis shows how important Indigenous Peoples and their lands are to the successful implementation of international conservation and sustainable development agendas. Article impact statement: Indigenous peoples' lands are important for the successful implementation of international conservation and sustainable development agendas. This article is protected by copyright. All rights reserved.

14.
Nat Ecol Evol ; 4(10): 1321-1326, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690905

RESUMO

Australia's 2019-2020 mega-fires were exacerbated by drought, anthropogenic climate change and existing land-use management. Here, using a combination of remotely sensed data and species distribution models, we found these fires burnt ~97,000 km2 of vegetation across southern and eastern Australia, which is considered habitat for 832 species of native vertebrate fauna. Seventy taxa had a substantial proportion (>30%) of habitat impacted; 21 of these were already listed as threatened with extinction. To avoid further species declines, Australia must urgently reassess the extinction vulnerability of fire-impacted species and assist the recovery of populations in both burnt and unburnt areas. Population recovery requires multipronged strategies aimed at ameliorating current and fire-induced threats, including proactively protecting unburnt habitats.

15.
Glob Chang Biol ; 26(8): 4344-4356, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32500604

RESUMO

Leading up to the Convention on Biological Diversity Conference of the Parties 15, there is momentum around setting bold conservation targets. Yet, it remains unclear how much of Earth's land area remains without significant human influence and where this land is located. We compare four recent global maps of human influences across Earth's land, Anthromes, Global Human Modification, Human Footprint and Low Impact Areas, to answer these questions. Despite using various methodologies and data, these different spatial assessments independently estimate similar percentages of the Earth's terrestrial surface as having very low (20%-34%) and low (48%-56%) human influence. Three out of four spatial assessments agree on 46% of the non-permanent ice- or snow-covered land as having low human influence. However, much of the very low and low influence portions of the planet are comprised of cold (e.g., boreal forests, montane grasslands and tundra) or arid (e.g., deserts) landscapes. Only four biomes (boreal forests, deserts, temperate coniferous forests and tundra) have a majority of datasets agreeing that at least half of their area has very low human influence. More concerning, <1% of temperate grasslands, tropical coniferous forests and tropical dry forests have very low human influence across most datasets, and tropical grasslands, mangroves and montane grasslands also have <1% of land identified as very low influence across all datasets. These findings suggest that about half of Earth's terrestrial surface has relatively low human influence and offers opportunities for proactive conservation actions to retain the last intact ecosystems on the planet. However, though the relative abundance of ecosystem areas with low human influence varies widely by biome, conserving these last intact areas should be a high priority before they are completely lost.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Florestas , Humanos , Tundra
16.
Nat Commun ; 11(1): 2840, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504033

RESUMO

Understanding changes in species distributions is essential to disentangle the mechanisms that drive their responses to anthropogenic habitat modification. Here we analyse the past (1970s) and current (2017) distribution of 204 species of terrestrial non-volant mammals to identify drivers of recent contraction and expansion in their range. We find 106 species lost part of their past range, and 40 of them declined by >50%. The key correlates of this contraction are large body mass, increase in air temperature, loss of natural land, and high human population density. At the same time, 44 species have some expansion in their range, which correlates with small body size, generalist diet, and high reproductive rates. Our findings clearly show that human activity and life history interact to influence range changes in mammals. While the former plays a major role in determining contraction in species' distribution, the latter is important for both contraction and expansion.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Mamíferos , Densidade Demográfica , Animais , Tamanho Corporal , Mudança Climática , Humanos , Modelos Biológicos , Dinâmica Populacional , Temperatura
17.
Nat Commun ; 11(1): 2072, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350288

RESUMO

Many nations use ecological compensation policies to address negative impacts of development projects and achieve No Net Loss (NNL) of biodiversity and ecosystem services. Yet, failures are widely reported. We use spatial simulation models to quantify potential net impacts of alternative compensation policies on biodiversity (indicated by native vegetation) and two ecosystem services (carbon storage, sediment retention) across four case studies (in Australia, Brazil, Indonesia, Mozambique). No policy achieves NNL of biodiversity in any case study. Two factors limit their potential success: the land available for compensation (existing vegetation to protect or cleared land to restore), and expected counterfactual biodiversity losses (unregulated vegetation clearing). Compensation also fails to slow regional biodiversity declines because policies regulate only a subset of sectors, and expanding policy scope requires more land than is available for compensation activities. Avoidance of impacts remains essential in achieving NNL goals, particularly once opportunities for compensation are exhausted.

19.
Proc Natl Acad Sci U S A ; 117(18): 9906-9911, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32317385

RESUMO

Degradation and loss of natural habitat is the major driver of the current global biodiversity crisis. Most habitat conservation efforts to date have targeted small areas of highly threatened habitat, but emerging debate suggests that retaining large intact natural systems may be just as important. We reconcile these perspectives by integrating fine-resolution global data on habitat condition and species assemblage turnover to identify Earth's high-value biodiversity habitat. These are areas in better condition than most other locations predicted to have once supported a similar assemblage of species and are found within both intact regions and human-dominated landscapes. However, only 18.6% of this high-value habitat is currently protected globally. Averting permanent biodiversity loss requires clear, spatially explicit targets for retaining these unprotected high-value habitats.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Planeta Terra , Animais , Ecossistema , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...