Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Org Lett ; 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32898422

RESUMO

A concise synthetic method has been developed to access functionalized naphtho[2,3]porphyrins through combining two sequence reactions involving a Heck-electrocyclization-aromatization sequence and a Wittig-Knovenegal sequence. Using this method, mononaphtho[2,3]porphyrin (NP-1), opp-dinaphtho[2,3]porphyrin (NP-2), and push-pull naphtho[2,3]porphyrin (NP-3) have been prepared. These naphtho[2,3]porphyrins displayed interesting optical and electrochemical properties. Excellent efficiencies of singlet oxygen generation were obtained for these naphtho[2,3]porphyrins.

2.
Artigo em Inglês | MEDLINE | ID: mdl-32725753

RESUMO

A series of largely π-extended multichromophoric molecules including cross-conjugated, half cross-conjugated, conjugation-interrupted and linearly conjugated systems were synthesized and characterized. These multichromophoric molecular systems revealed interesting structural-property relationships. Bisporphyrin-fused pentacenes Pen-1 b and Pen-2 a showed rich redox chemistry with 7 and 8 observable redox states, respectively. The linearly-conjugated bisporphyrin-fused pentacenes (Pen-1 b and Pen-2 a) possess much narrower HOMO-LUMO gaps (1.65 and 1.42 eV redox, respectively) and higher HOMO energy levels than those of their pentacene analogues (2.23 and 2.01 eV redox, respectively), similar to those of much less stable hexacenes and heptacenes. An estimated half-life of >945 h was obtained for bisporphyrin-fused pentacene Pen-2 a, which is much longer than that of its pentacene analogue (BPE-P, half-life, 33 h).

3.
Phys Chem Chem Phys ; 22(25): 14356-14363, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32568321

RESUMO

A multichromophoric triad, ZnP-OxP-C60 containing porphyrin (ZnTPP hereafter ZnP), oxoporphyrinogen (OxP) and fullerene (C60) has been synthesized to probe the intramolecular dynamics of its electron and energy transfer in relation to the presence of the closely linked electron deficient OxP-C60 'special pair', constructed as a mimic of the naturally occurring photosynthetic antenna-reaction center. The DFT optimized structure of the triad reveals the relative spatial remoteness of the ZnP entity with proximal OxP/C60 entities. Free-energetics of different energy and electron transfer events were estimated using spectral, computational and electrochemical studies, according to the Rehm-Weller approach. Femtosecond transient absorption spectral studies revealed energy transfer from 1ZnP* to OxP to yield ZnP-1OxP*-C60, and electron transfer to yield ZnP˙+-OxP-C60˙- and/or ZnP-OxP˙+-C60˙- charge seperated states. That is, the ZnP entity in the triad operates as both antenna and electron donor to generate relatively long-lived charge separated states thus mimicking the early photoevents of natural photosynthesis.

4.
J Am Chem Soc ; 141(50): 19570-19574, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31736293

RESUMO

Peripherally substituted tetradecaazaheptacene (N14Hp) compounds, exhibiting amphiprotism-coupled emission, have been synthesized. X-ray crystallography reveals a planar acene-like chromophore, and electronic absorption and emission occur in the near-infrared biological transparency window (650-900 nm). The compounds exhibit long-wavelength emission with photoluminescence quantum yields ΦPL up to ∼0.61 at 686 nm, with the monodeprotonated state ΦPL ≈ 0.58 at 712 nm. This unprecedented highly nitrogenous chromophore illustrates the stability and utility of the pyrazinacenes for different applications based on their photophysical properties and chemical structures.

5.
Dalton Trans ; 48(41): 15583-15596, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31353382

RESUMO

Interactions of anionic guests with a tritopic peripherally functionalized conjugated calix[4]pyrrole host (1) prepared using a regioselective synthetic method is reported. The regioselectivity of synthesis relies on selective N-alkylation of the calix[4]pyrrole caused by peripheral substitution of one pyrrole group with subsequent N-alkylation at the opposing pyrrole group termed by us 'knock-on' regioselectivity. The resulting host molecule exhibits anion interactions with common chloride and nitrate anions enhanced by an order of magnitude over the parent conjugated calix[4]pyrrole. Combined analysis of 1H NMR and UV-vis spectroscopic titration data enabled an evaluation of binding strengths of anions with the host KA in a binding model where the salt dissociation process is also incorporated in the form of its dissociation constant Kd. Anions could be classified as two types based on their interactions with 1: Type A anions (chloride, nitrate, perchlorate, hydrogensulphate) associate as 1 : 1 complexes through hydrogen bonding while interactions involving Type B anions (acetate, fluoride, dihydrogenphosphate) are complicated by host deprotonation and/or countercation association. Hosts based on rim-functionalized calix[4]pyrroles such as 1 represent a promising new family of chromophores for estimation of biologically relevant anions or other species.

6.
Nat Commun ; 10(1): 1007, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824697

RESUMO

Molecules that can exist in multiple states with the possibility of toggling between those states based on different stimuli have potential for use in molecular switching or sensing applications. Multimodal chemical or photochemical oxidative switching of an antioxidant-substituted resorcinarene macrocycle is reported. Intramolecular charge-transfer states, involving hemiquinhydrones are probed and these interactions are used to construct an oxidation-state-coupled molecular switching manifold that reports its switch-state conformation via striking variation in its electronic absorption spectra. The coupling of two different oxidation states with two different charge-transfer states within one macrocyclic scaffold delivers up to five different optical outputs. This molecular switching manifold exploits intramolecular coupling of multiple redox active substituents within a single molecule.

7.
Chem Commun (Camb) ; 54(11): 1351-1354, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29350717

RESUMO

A bis-crown ether-oxoporphyrinogen was newly synthesized and self-assembled concurrently with C60 alkyl ammonium cations at the crown ether sites and F- anions (through hydrogen bonding) at the oxoporphyrinogen core. Ultrafast photoinduced charge transfer processes within the donor-acceptor conjugate were promoted by fluoride ion binding and this was established using various spectroscopic methods and transient absorption studies.

8.
Dalton Trans ; 45(9): 4006-16, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26841138

RESUMO

Effects of macrocycle bromination on the structural, electrochemical and anion binding properties of 5,10,15,20-tetrakis(3,5-di-t-butyl-4-oxo-cyclohexa-2,5-dienylidene)porphyrinogen, OxP, are reported. Bromination of 5,10,15,20-tetrakis(3,5-di-t-butyl-4-hydroxyphenyl)-porphinatocopper(II), [T(DtBHP)P]Cu(II) yielded ß-Br8OxP, which was N-alkylated to ß-Br8OxPBz2 and ß-Br8OxPBz4 (where Bz = 4-bromobenzyl). ß-Br8OxPBz2 crystallizes in orthorhombic space group Pccn [a = 23.5535(17) Å, b = 19.3587(14) Å c = 20.9760(15) Å, V = 9564.3(12) Å3]. It has a calix[4]pyrrole-like structure with a saddle conformation and two molecules of methanol occupy a central binding site made up of the non-alkylated pyrrole N­H groups. Computational and electrochemical studies revealed widening HOMO­LUMO band gaps for the brominated compounds over the non-brominated analogues consistent with the observed hypsochromic shifts in electronic absorption spectra. Solvatochromic and chromogenic effects on anion binding were both observed for ß-Br8OxP and ß-Br8OxPBz2 with binding affinities of anions being greater than those observed for the corresponding OxP and OxPBz2. Colorimetric sensor studies suggest that the OxP compounds reported here are possible candidates for use in the design of optoelectronic noses for detection of anions and anionic analyte species of biological interest.

9.
Chemistry ; 22(4): 1301-12, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26617262

RESUMO

An electron-deficient copper(III) corrole was utilized for the construction of donor-acceptor conjugates with zinc(II) porphyrin (ZnP) as a singlet excited state electron donor, and the occurrence of photoinduced charge separation was demonstrated by using transient pump-probe spectroscopic techniques. In these conjugates, the number of copper corrole units was varied from 1 to 2 or 4 units while maintaining a single ZnP entity to observe the effect of corrole multiplicity in facilitating the charge-separation process. The conjugates and control compounds were electrochemically and spectroelectrochemically characterized. Computational studies revealed ground state geometries of the compounds and the electron-deficient nature of the copper(III) corrole. An energy level diagram was established to predict the photochemical events by using optical, emission, electrochemical, and computational data. The occurrence of charge separation from singlet excited zinc porphyrin and charge recombination to yield directly the ground state species were evident from the diagram. Femtosecond transient absorption spectroscopy studies provided spectral evidence of charge separation in the form of the zinc porphyrin radical cation and copper(II) corrole species as products. Rates of charge separation in the conjugates were found to be of the order of 10(10)  s(-1) and increased with increasing multiplicity of copper(III) corrole entities. The present study demonstrates the importance of copper(III) corrole as an electron acceptor in building model photosynthetic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA