Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Gene ; 805: 145910, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34419567

RESUMO

Ethylene is an important regulatory phytohormone for sex differentiation and flower development. As the rate-limiting enzyme encoding genes in ethylene biosynthesis, ACS gene family has been well studied in cucumber; however, little is known in other cucurbit crops, such as melon and watermelon, which show diverse sex types in the field. Here, we identified and characterized eight ACS genes each in the genomes of melon and watermelon. According to the conserved serine residues at C-terminal, all the ACS genes could be characterized into three groups, which were supported by the exon-intron organizations and conserved motif distributions. ACS genes displayed diverse tissue-specific expression patterns among four melon and three watermelon sex types. Furthermore, a comparative expression analysis in the shoot apex identified orthologous pairs with potential functions in sex determination, e.g., ACS1s and ACS6s. All ACS orthologs in melon and watermelon exhibited similar expression patterns in monoecious and gynoecious genotypes, except for ACS11s and ACS12s. As expected, the majority of ACS genes were responsive to exogenous ethephon; however, some orthologs exhibited opposite expression patterns, such as ACS1s, ACS9s, and ACS10s. Collectively, our findings provide valuable ACS candidates related to flower development in various sex types of melon and watermelon.


Assuntos
Cucurbitaceae/genética , Etilenos/metabolismo , Liases/metabolismo , Diferenciação Sexual/genética , Citrullus/genética , Citrullus/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucurbitaceae/metabolismo , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/genética , Genótipo , Liases/genética , Filogenia , Proteínas de Plantas/genética , Diferenciação Sexual/fisiologia
2.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34445115

RESUMO

The SWEET (Sugars Will Eventually be Exported Transporter) proteins are a novel family of sugar transporters that play key roles in sugar efflux, signal transduction, plant growth and development, plant-pathogen interactions, and stress tolerance. In this study, 22 ClaSWEET genes were identified in Citrullus lanatus (Thunb.) through homology searches and classified into four groups by phylogenetic analysis. The genes with similar structures, conserved domains, and motifs were clustered into the same groups. Further analysis of the gene promoter regions uncovered various growth, development, and biotic and abiotic stress responsive cis-regulatory elements. Tissue-specific analysis showed most of the genes were highly expressed in male flowers and the roots of cultivated varieties and wild cultivars. In addition, qRT-PCR results further imply that ClaSWEET proteins might be involved in resistance to Fusarium oxysporum infection. Moreover, a significantly higher expression level of these genes under various abiotic stresses suggests its multifaceted role in mediating plant responses to drought, salt, and low-temperature stress. The genome-wide characterization and phylogenetic analysis of ClaSWEET genes, together with the expression patterns in different tissues and stimuli, lays a solid foundation for future research into their molecular function in watermelon developmental processes and responses to biotic and abiotic stresses.


Assuntos
Transporte Biológico/genética , Citrullus/genética , Genoma de Planta/genética , Família Multigênica/genética , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Açúcares/metabolismo , Fusarium/genética , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla/métodos , Filogenia , Raízes de Plantas/genética , Regiões Promotoras Genéticas/genética
3.
Theor Appl Genet ; 134(10): 3263-3277, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34185107

RESUMO

KEY MESSAGE: Using two segregating population, watermelon stripe pattern underlying gene ClSP was delimited to a 611.78 Kb region, consisting of four discrete haploblocks and ongoing recombination suppression. Stripe pattern is an important commodity trait in watermelon, displaying diverse types. In this study, two segregating populations were generated for genetic mapping the single dominant locus ClSP, which was finally delimited to a 611.78 Kb interval with suppression of recombination. According to polymorphism sites detected among genotypes, four discrete haploblocks were characterized in this target region. Based on reference genomes, 81 predicted genes were annotated in the ClSP interval, including seven transcription factors namely as candidate No1-No7. Meanwhile, the ortholog gene of cucumber ist responsible for the irregular stripes was considered as candidate No8. Strikingly, gene structures of No1-No5 completely varied from their reference descriptions and subsequently re-annotated. For instance, the original adjacent distribution candidates No2 and No3 were re-annotated as No2_3, while No4 and No5 were integrated as No4_5. Sequence analysis demonstrated the third polymorphism in CDS of re-annotated No4_5 resulting in truncated proteins in non-stripe plants. Furthermore, only No4_5 was down-regulated in light green stripes relative to dark green stripes. Transcriptome analysis identified 356 DEGs between dark green striped and light green striped peels, with genes involved in photosynthesis and chloroplast development down-regulated in light green stripes but calcium ion binding related genes up-regulated. Additionally, 38 DEGs were annotated as transcription factors, with the majority up-regulated in light green stripes, such as ERFs and WRKYs. This study not only contributes to a better understanding of the molecular mechanisms underlying watermelon stripe development, but also provides new insights into the genomic structure of ClSP locus and valuable candidates.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Citrullus/genética , Regulação da Expressão Gênica de Plantas , Genes Recessivos , Proteínas de Plantas/metabolismo , Recombinação Genética , Citrullus/crescimento & desenvolvimento , Citrullus/metabolismo , Perfilação da Expressão Gênica , Fenótipo , Proteínas de Plantas/genética
4.
J Proteomics ; 243: 104241, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33905954

RESUMO

Heterosis has been widely applied in watermelon breeding, because of the higher resistance and yield of hybrid. As the basis of heterosis utilization, genic male sterility (GMS) is an important tool for facilitating hybrid seed production, while the detailed mechanism in watermelon is still largely unknown. Here, we report a spontaneous mutant Se18 exhibited complete male sterility due to the uniquely multilayered tapetum and the un-meiotic pollen mother cells during pollen development. Using TMT based quantitative proteomic analyses, a total of 348 differentially abundant proteins (DAPs) were detected with the overwhelming majority down-regulated in mutant Se18. By analyzing the putative orthologs/homologs of Arabidopsis GMS related genes, the biosynthesis and transport of sporopollenin and tryphine precursors were predictably altered in mutant compared to its sibling wild type. Moreover, the general phenylpropanoid pathway as well as its related metabolisms was also expectably impaired in mutant, coincident with the pale yellow petals. Notably, some key transcriptional factors regulating tapetum development, together with their down-regulated targets, offered potentially valuable candidates regarding of male sterility. Collectively, the disrupted regulatory networks underlying male sterility of watermelon was proposed, which provide novel insights into genetic mechanism of male reproductive process and rich gene resources for future research. SIGNIFICANCE: Watermelon is an importantly economical cucurbit crop worldwide, with high nutritional value. Although several male sterile mutants have been identified in watermelon, the underlying molecular mechanism is poorly elucidated. Comparative cytological analysis revealed that the defective development of tapetum was responsible for male sterility in mutant Se18. Combined with the morphological comparison, male floral buds at 2.0-2.5 mm in diameter were confirmed with no obvious phenotypic differences but distinct cytological defects, which were in turn sampled for TMT based proteomic analyses. Referring to functionally characterized GMS related genes, the genetic pathway DYT1-TDF1-AMS-MS188-MS1 regulating tapetum development, together with some downstream targets, were considerably altered in mutant Se18. Moreover, enrichment analyses illustrated the general phenylpropanoid related metabolisms, as well as the biosynthesis and transport of sporopollenin and tryphine precursors, were significantly disrupted in defective anther development. Collectively, the proposed regulatory networks in watermelon not only contribute to a better understanding of molecular mechanisms underlying male sterility, but also provide valuable GMS related candidates for future researches.


Assuntos
Citrullus , Infertilidade Masculina , Citrullus/genética , Flores , Regulação da Expressão Gênica de Plantas , Humanos , Masculino , Melhoramento Vegetal , Infertilidade das Plantas/genética , Proteômica
5.
Genes (Basel) ; 12(3)2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33668231

RESUMO

Dirigent (DIR) proteins are induced under various stress conditions and involved in sterio- and regio-selective coupling of monolignol. A striking lack of information about dirigent genes in cucurbitaceae plants underscores the importance of functional characterization. In this study, 112 DIR genes were identified in six species, and 61 genes from major cultivated species were analyzed. DIRs were analyzed using various bioinformatics tools and complemented by expression profiling. Phylogenetic analysis segregated the putative DIRs into six distinctively known subgroups. Chromosomal mapping revealed uneven distribution of genes, whereas synteny analysis exhibited that duplication events occurred during gene evolution. Gene structure analysis suggested the gain of introns during gene diversification. Gene ontology (GO) enrichment analysis indicates the participation of proteins in lignification and pathogen resistance activities. We also determined their organ-specific expression levels in three species revealing preferential expression in root and leaves. Furthermore, the number of CmDIR (CmDIR1, 6, 7 and 12) and ClDIR (ClDIR2, 5, 8, 9 and 17) genes exhibited higher expression in resistant cultivars after powdery mildew (PM) inoculation. In summary, based on the expression and in-silico analysis, we propose a role of DIRs in disease resistance mechanisms.


Assuntos
Cucurbitaceae , Resistência à Doença , Filogenia , Doenças das Plantas , Folhas de Planta , Proteínas de Plantas , Raízes de Plantas , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Cucurbitaceae/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia
6.
Plant Sci ; 303: 110761, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33487347

RESUMO

Seed germination is a vital stage in the plant life-cycle that greatly contributes to plant establishment. Melatonin has been shown to promote seed germination under various environmental stresses; however, the mechanism remains largely underexplored. Here, we reported that melatonin antagonized abscisic acid (ABA) to promote seed germination by regulating ABA and gibberellic acid (GA3) balance. Transcriptomic analysis revealed that such a role of melatonin was associated with Ca2+ and redox signaling. Melatonin pretreatment induced Ca2+ efflux accompanied by an up-regulation of vacuolar H+/Ca2+ antiporter 3 (CAX3). AtCAX3 deletion in Arabidopsis exhibited reduced Ca2+ efflux. Inhibition of Ca2+ efflux in the seeds of melon and Arabidopsis mutant AtCAX3 compromised melatonin-induced germination under ABA stress. Melatonin increased H2O2 accumulation, and H2O2 pretreatment decreased ABA/GA3 ratio and promoted seed germination under ABA stress. However, complete inhibition of H2O2 accumulation abolished melatonin-induced ABA and GA3 balance and seed germination. Our study reveals a novel regulatory mechanism in which melatonin counteracts ABA to induce seed germination that essentially involves CAX3-mediated Ca2+ efflux and H2O2 accumulation, which, in turn, regulate ABA and GA3 balance by promoting ABA catabolism and/or GA3 biosynthesis.


Assuntos
Ácido Abscísico/antagonistas & inibidores , Cálcio/metabolismo , Germinação/fisiologia , Peróxido de Hidrogênio/metabolismo , Melatonina/fisiologia , Reguladores de Crescimento de Plantas/antagonistas & inibidores , Ácido Abscísico/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Giberelinas/metabolismo , Glutationa/metabolismo , Melatonina/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reação em Cadeia da Polimerase , Sementes/crescimento & desenvolvimento , Análise de Sequência de RNA
7.
Mol Neurobiol ; 58(3): 1074-1087, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33089423

RESUMO

Radiation-induced brain injury (RIBI) is a serious complication in cancer patients receiving brain radiotherapy, and accumulating evidence suggests that microglial activation plays an important role in its pathogenesis. Fractalkine (FKN) is a crucial mediator responsible for the biological activity of microglia. In this study, the effect of FKN on activated microglial after irradiation and RIBI was explored and the underlying mechanisms were investigated. Our study demonstrated treatment with exogenous FKN diminished radiation-induced production of pro-inflammatory factors, such as IL1-ß and TNFα, promoted transformation of microglial M1 phenotype to M2 phenotype after irradiation, and partially recovered the spatial memory of irradiated mice. Furthermore, upregulation of FKN/CX3CR1 via FKN lentivirus promoted radiation-induced microglial M2 transformation in the hippocampus and diminished the spatial memory injury of irradiated mice. Furthermore, while inhibiting the expression of CX3CR1, which exclusively expressed on microglia in the brain, the regulatory effect of FKN on microglia and cognitive ability of mice disappeared after radiation. In conclusion, the FKN could attenuate RIBI through the microglia polarization toward M2 phenotype by binding to CX3CR1 on microglia. Our study unveiled an important role of FKN/CX3CR1 in RIBI, indicating that promotion of FKN/CX3CR1 axis could be a promising strategy for the treatment of RIBI.

8.
Ther Adv Med Oncol ; 12: 1758835920965853, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193827

RESUMO

Background: Hypo-fractionation radiotherapy (HFRT) was considered to be an important treatment for non-small cell lung cancer (NSCLC), but the radiobiological effects of HFRT on NSCLC remain unclear. The aim of this study was to investigate specific biological effect of HFRT on tumor angiogenesis, compared with conventional radiotherapy (CRT). Methods: The subcutaneous xenograft models and the dorsal skinfold window chamber (DSWC) models of nude mice bearing H460 and HCC827 NSCLC cells were irradiated with doses of 0 Gy (sham group), 22 Gy delivered into 11 fractions (CRT group) or 12 Gy delivered into 1 fraction (HFRT group). At certain time-points after irradiation, the volumes, hypoxic area, coverage rate of pericyte and micro-vessel density (MVD) of the subcutaneous xenograft models were detected, and the tumor vasculature was visualized in the DSMC model. The expressions of phosphorylated signal transducer and activator of transcription (p-STAT3), hypoxia-inducible factor 1-α (HIF-1α), CXCL12 and VEGFA were detected. Results: Compared with the CRT groups, HFRT showed more-efficient tumor growth-suppression, accompanied by a HFRT-induced window-period, during which vasculature was normalized, tumor hypoxia was improved and MVD was decreased. Moreover, during the window-period, the signal levels of p-STAT3/HIF-1α pathway and the expressions of its downstream angiogenic factors (VEGFA and CXCL12) were inhibited by HFRT. Conclusion: Compared with CRT, HFRT induced tumor vasculature normalization by rendering the remaining vessels less tortuous and increasing pericyte coverage of tumor blood vessels, thereby ameliorating tumor hypoxia and enhancing the tumor-killing effect. Moreover, HFRT might exert the aforementioned effects through p-STAT3/HIF-1α signaling pathway.

9.
Transbound Emerg Dis ; 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33113239

RESUMO

To obtain more information of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) transmission via faeces in/between farms, 360 swine faecal samples were randomly collected from different farms in China from 2017 to 2019. Sixty-two ORF5 genes were amplified by PCR from 120 positive samples identified by real-time RT-PCR and further characterized by sequencing. Phylogenetic analysis based on the ORF5 gene revealed that these strains can be divided into four lineages: lineage 1 (NADC30-like), lineage 3 (QYYZ-like), lineage 5.1 (VR2332-like) and lineage 8.7 (JXA1-like), with 62.9% (39/62) NADC30-like virus, 21% (13/62) QYYZ-like virus, 1.6% (1/62) VR2332-like virus and 14.5% (9/62) for JAX1-like virus. In particular, 14 PRRSVs including lineage 1, 5.1 and 8.7 can be isolated from 120 positive faecal samples, which further suggests that faecal transmission may be an important factor in the spread of PRRSV in farms. Full-length genome sequencing analysis showed that 14 isolates share 83.1%-97.7% homology with each other and 82.3%-96.1% identity with NADC30, 83.2%-99.7% with VR2332, 79.6%-87.2% with QYYZ and 82.6%-98.9% with JXA1 and CH-1a, and only 60.1%-60.7% with LV. Recombination events were observed in the six out of 14 strains. Collectively, the data of this study are useful for understanding the spread of PRRSV via faeces. Additionally, the virus was isolated from positive faecal samples, suggesting that faecal transmission may be an important factor in the spread of PRRSV in farms.

10.
J Hematol Oncol ; 13(1): 142, 2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092612

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

11.
Thorax ; 75(12): 1047-1057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077617

RESUMO

INTRODUCTION: Airway epithelial cells are recognised as an essential controller for the initiation and perpetuation of asthmatic inflammation, yet the detailed mechanisms remain largely unknown. This study aims to investigate the roles and mechanisms of the mechanistic target of rapamycin (MTOR)-autophagy axis in airway epithelial injury in asthma. METHODS: We examined the MTOR-autophagy signalling in airway epithelium from asthmatic patients or allergic mice induced by ovalbumin or house dust mites, or in human bronchial epithelial (HBE) cells. Furthermore, mice with specific MTOR knockdown in airway epithelium and autophagy-related lc3b -/- mice were used for allergic models. RESULTS: MTOR activity was decreased, while autophagy was elevated, in airway epithelium from asthmatic patients or allergic mice, or in HBE cells treated with IL33 or IL13. These changes were associated with upstream tuberous sclerosis protein 2 signalling. Specific MTOR knockdown in mouse bronchial epithelium augmented, while LC3B deletion diminished allergen-induced airway inflammation and mucus hyperproduction. The worsened inflammation caused by MTOR deficiency was also ameliorated in lc3b -/- mice. Mechanistically, autophagy was induced later than the emergence of allergen-initiated inflammation, particularly IL33 expression. MTOR deficiency increased, while knocking out of LC3B abolished the production of IL25 and the eventual airway inflammation on allergen challenge. Blocking IL25 markedly attenuated the exacerbated airway inflammation in MTOR-deficiency mice. CONCLUSION: Collectively, these results demonstrate that allergen-initiated inflammation suppresses MTOR and induces autophagy in airway epithelial cells, which results in the production of certain proallergic cytokines such as IL25, further promoting the type 2 response and eventually perpetuating airway inflammation in asthma.


Assuntos
Asma/metabolismo , Inflamação/metabolismo , Interleucina-17/biossíntese , Interleucinas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Adulto , Idoso , Alérgenos , Animais , Asma/patologia , Asma/fisiopatologia , Autofagia/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Interleucina-13/metabolismo , Interleucina-13/farmacologia , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Pessoa de Meia-Idade , Mucosa Respiratória/fisiopatologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
13.
Oncol Lett ; 20(4): 61, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32863894

RESUMO

The epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) contribute to an increased response rate, compared with chemotherapy, in patients with inhibitor-sensitive EGFR mutations. The present study evaluated the association between the maximum standardized uptake value (SUVmax) of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET/CT), as well as serum carcinoembryonic antigen (CEA) levels and EGFR mutations prior to treatment, in patients with non-small cell lung cancer (NSCLC). Patients with histologically confirmed NSCLC (n=167), who underwent an 18F-FDG PET/CT scan, EGFR mutation analysis and a serum CEA test participated in the present study. Multivariate logistic regression analysis was used to analyze predictors of EGFR mutations. Receiver-operating characteristic (ROC) curve analysis was performed to determine the efficient cut-off value. Survival rate analysis was evaluated according to SUVmax and EGFR mutation status. A decreased SUVmax and an increased CEA level was observed in patients with EGFR-mutations, compared with patients with wild-type primary lesions and metastatic lymph nodes. The exon 19 EGFR mutation was associated with increased SUVmax, compared with the exon 21 L858R mutation. The ROC analysis indicated that an 18F-FDG PET/CT uptake SUVmax >11.5 may be a predictor of the wild-type EGFR genotype and increased CEA levels (CEA >9.4 ng/ml) were associated with EGFR mutations. Furthermore, patients with no smoking history, low SUVmax of the primary tumor, metastatic lymph nodes and a high CEA level were significantly associated with EGFR mutation status. The results of the present study indicated that patients with advanced NSCLC, particularly Chinese patients, with decreased SUVmax and increased CEA levels are associated with EGFR mutations, which may serve as predictors for the EGFR-TKI therapeutic response.

15.
Transl Lung Cancer Res ; 9(3): 745-760, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32676336

RESUMO

Background: Combining Endostar (ES) with radiotherapy (RT) has shown a promising therapeutic effect on non-small cell lung carcinoma with brain metastases (BMs) in clinical practice. However, the specific mechanism is not yet fully understood. The present study aimed to investigate the effects of ES on blood vessels, tumor-associated macrophages (TAMs), and T cells in a tumor microenvironment treated with RT. Methods: BM models were established by stereotactic and intracarotid injection of luciferase-Lewis lung cancer (LLC) cells into female C57BL mice. The animals were randomly divided into 4 groups: normal saline (NS), ES, RT, and ES plus radiotherapy (ES + RT) groups. Tumor size was determined with the IVIS imaging system. Tumor specimens were stained with CD34 and α-SMA to investigate tumor vascular changes. The proportions of TAMs, CD4+ T cells, and CD8+ T cells in tumor tissues were determined by flow cytometry and immunofluorescence. The expressions of hypoxia-inducible factor 1α (HIF-1α) and CXCR4 were deduced using western blotting and immunohistochemistry (IHC). Results: ES + RT significantly suppressed tumor growth compared to the other 3 groups. RT decreased M1 and increased M2 in microglial cells and bone marrow-derived macrophages (BMDMs) relative to NS, while ES had the opposite effect. The ratio of CD8+T/CD4+T was increased in the ES + RT group compared to the other 3 groups. Tumor vascular maturity (α-SMA+/CD34+) was increased while HIF-1α was significantly suppressed in the ES + RT group. CXCR4 expression, which is involved in TAM recruitment, increased following RT, whereas, ES attenuated its expression. Conclusions: Our findings suggest that ES can promote the normalization of tumor blood vessels and increase the anti-tumor immune-related immune cells infiltrating the tumor following RT treatment.

16.
3 Biotech ; 10(5): 222, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32368431

RESUMO

Genic male sterility (GMS) is a common and important trait, which is widely used for the production of hybrid seeds. However, the molecular mechanism of GMS in watermelon remains poorly understood. In this study, we comparatively analyzed the transcriptome profiles of sterile and fertile floral buds using the bulked segregant analysis (BSA) and transcriptome sequencing (RNA-seq). A total of 2507 differentially expressed genes (DEGs) including 593 up-regulated and 1914 down-regulated, were identified to be related to male sterility in watermelon line Se18. Gene ontology (GO) analysis showed that 57 GO terms were significantly enriched, while Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed plant hormone signal transduction, glycolysis/gluconeogenesis, starch and sucrose metabolism, plant-pathogen interaction, phenylpropanoid biosynthesis pathways were obviously enriched. Furthermore, the efficiency of the RNA-seq analysis was validated by quantitative real-time PCR (qRT-PCR). Among the DEGs, some valuable candidate genes involved in pollen development were identified, such as gene Cla000029, a bHLH transcription factor and homologous to MS1 in Arabidopsis. Moreover, other DEGs including MYB gene Cla012590 (MYB26), Cla017100 (MYB21), etc., also provide useful information for further understanding the function of key genes involved in pollen development. This study provides new insights into the global network of male sterility in watermelon.

17.
Pathogens ; 9(4)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340374

RESUMO

Pathogens hitting the plant cell wall is the first impetus that triggers the phenylpropanoid pathway for plant defense. The phenylpropanoid pathway bifurcates into the production of an enormous array of compounds based on the few intermediates of the shikimate pathway in response to cell wall breaches by pathogens. The whole metabolomic pathway is a complex network regulated by multiple gene families and it exhibits refined regulatory mechanisms at the transcriptional, post-transcriptional, and post-translational levels. The pathway genes are involved in the production of anti-microbial compounds as well as signaling molecules. The engineering in the metabolic pathway has led to a new plant defense system of which various mechanisms have been proposed including salicylic acid and antimicrobial mediated compounds. In recent years, some key players like phenylalanine ammonia lyases (PALs) from the phenylpropanoid pathway are proposed to have broad spectrum disease resistance (BSR) without yield penalties. Now we have more evidence than ever, yet little understanding about the pathway-based genes that orchestrate rapid, coordinated induction of phenylpropanoid defenses in response to microbial attack. It is not astonishing that mutants of pathway regulator genes can show conflicting results. Therefore, precise engineering of the pathway is an interesting strategy to aim at profitably tailored plants. Here, this review portrays the current progress and challenges for phenylpropanoid pathway-based resistance from the current prospective to provide a deeper understanding.

18.
Hortic Res ; 6: 132, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31814985

RESUMO

The dwarf architecture is an important and valuable agronomic trait in watermelon breeding and has the potential to increase fruit yield and reduce labor cost in crop cultivation. However, the molecular basis for dwarfism in watermelon remains largely unknown. In this study, a recessive dwarf allele (designated as Cldf (Citrullus lanatus dwarfism)) was fine mapped in a 32.88 kb region on chromosome 09 using F2 segregation populations derived from reciprocal crossing of a normal line M08 and a dwarf line N21. Gene annotation of the corresponding region revealed that the Cla015407 gene encoding a gibberellin 3ß-hydroxylase functions as the best possible candidate gene for Cldf. Sequence analysis showed that the fourth polymorphism site (a G to A point mutation) at the 3' AG splice receptor site of the intron leads to a 13 bp deletion in the coding sequence of Cldf in dwarf line N21 and thus results in a truncated protein lacking the conserved domain for binding 2-oxoglutarate. In addition, the dwarf phenotype of Cldf could be rescued by exogenous GA3 application. Phylogenetic analysis suggested that the small multigene family GA3ox (GA3 oxidase) in cucurbit species may originate from three ancient lineages in Cucurbitaceae. All these data support the conclusion that Cldf is a GA-deficient mutant, which together with the cosegregated marker can be used for breeding new dwarf cultivars.

19.
PeerJ ; 7: e7859, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637126

RESUMO

PRRS virus (PRRSV) has undergone rapid evolution and resulted in immense economic losses worldwide. In the present study, a PRRSV strain named FJ0908 causing high abortion rate (25%) and mortality (40%) was detected in a swine herd in China. To determine if a new PRRSV genotype had emerged, we characterized the genetic characteristics of FJ0908. Phylogenetic analysis indicated that FJ0908 was related to 1-7-4-like strains circulating in the United States since 2014. Furthermore, the ORF5 sequence restriction fragment length polymorphism (RFLP) pattern of FJ0908 was 1-7-4. Additionally, FJ0908 had a 100 aa deletion (aa329-428) within nsp2, as compared to VR-2332, and the deletion pattern was consistent with most of 1-7-4 PRRSVs. Collectively, the data of this study contribute to the understanding of 1-7-4-like PRRSV molecular epidemiology in China.

20.
Aging (Albany NY) ; 11(17): 6734-6761, 2019 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-31498117

RESUMO

Brain metastasis (BM) is associated with poor prognosis in patients with non-small cell lung cancer (NSCLC). We sought to identify microRNAs (miRNAs) that could serve as biomarkers to differentiate NSCLC patients with and without BM. Logistic regression was conducted with 122 NSCLC patients (60 without BM, 62 with BM) to assess the association between miRNAs and BM. We confirmed several risk factors for BM and revealed that serum miR-330-3p levels are higher in NSCLC patients with BM than that without BM. Overexpression of miR-330-3p promoted proliferation, migration, invasion and epithelial-mesenchymal transition (EMT) of NSCLC cells in vitro and NSCLC tumorigenesis in vivo. Knocking down miR-330-3p suppressed this metastatic phenotype. We identified putative miR-330-3p target genes by comparing mRNA microarray analysis data from A549 cells after miR-330-3p knockdown with candidate miR-330-3p target genes predicted by public bioinformatic tools and luciferase reporter assays. We found that GRIA3 is a target of miR-330-3p and that miR-330-3p stimulates EMT progress by mediating GRIA3-TGF-ß1 interaction. Our results provide novel insight into the role of miR-330-3p in NSCLC metastasis, and suggest miR-330-3p may be a useful biomarker for identifying NSCLC with metastatic potential.


Assuntos
Neoplasias Encefálicas/patologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Receptores de AMPA/metabolismo , Animais , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Xenoenxertos , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...