Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 12(1): 6858, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824214

RESUMO

Muntjac deer have experienced drastic karyotype changes during their speciation, making it an ideal model for studying mechanisms and functional consequences of mammalian chromosome evolution. Here we generated chromosome-level genomes for Hydropotes inermis (2n = 70), Muntiacus reevesi (2n = 46), female and male M. crinifrons (2n = 8/9) and a contig-level genome for M. gongshanensis (2n = 8/9). These high-quality genomes combined with Hi-C data allowed us to reveal the evolution of 3D chromatin architectures during mammalian chromosome evolution. We find that the chromosome fusion events of muntjac species did not alter the A/B compartment structure and topologically associated domains near the fusion sites, but new chromatin interactions were gradually established across the fusion sites. The recently borne neo-Y chromosome of M. crinifrons, which underwent male-specific inversions, has dramatically restructured chromatin compartments, recapitulating the early evolution of canonical mammalian Y chromosomes. We also reveal that a complex structure containing unique centromeric satellite, truncated telomeric and palindrome repeats might have mediated muntjacs' recurrent chromosome fusions. These results provide insights into the recurrent chromosome tandem fusion in muntjacs, early evolution of mammalian sex chromosomes, and reveal how chromosome rearrangements can reshape the 3D chromatin regulatory conformations during species evolution.

3.
Innovation (N Y) ; 2(4): 100175, 2021 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-34820658
4.
Ecol Evol ; 11(19): 13175-13185, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646461

RESUMO

Traits of organisms are shaped by their living environments and also determined in part by their phylogenetic relationships. For example, phylogenetic relationships often affect the geographic distributions of animals and cause variation in their living environments, which usually play key roles in the life history and determine the functional traits of species. As an ancient family of mammals, bears widely distribute and have evolved some specific strategies for survival and reproduction during their long-term evolutionary histories. Many studies on the ecology of bears have been conducted in recent decades, but few have focused on the relationships between their geographic distributions and ecological adaptations. Here, using bears as a model system, we collected and reanalyzed data from the available literatures to explore how geographic distributions and phylogenetic relationships shape the functional traits of animals. We found a positive relationship between phylogenetic relatedness and geographic distributions, with bears distributed in adjacent areas applying more similar strategies to survive and reproduce: (a) Bears living at high latitudes consumed a higher proportion of vertebrates, which may provide more fat for adaptation to low temperatures, and (b) their reproduction rhythms follow fluctuations in seasonal forage availability and quality, in which bears reach mating status from March to May and give birth in approximately November or later.

10.
Sci Rep ; 11(1): 21287, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34711890

RESUMO

The giant panda (Ailuropoda melanoleuca) is an iconic mammal, but the function of its black-and-white coloration is mysterious. Using photographs of giant pandas taken in the wild and state-of-the-art image analysis, we confirm the counterintuitive hypothesis that their coloration provides camouflage in their natural environment. The black fur blends into dark shades and tree trunks, whereas white fur matches foliage and snow when present, and intermediate pelage tones match rocks and ground. At longer viewing distances giant pandas show high edge disruption that breaks up their outline, and up close they rely more on background matching. The results are consistent across acuity-corrected canine, feline, and human vision models. We also show quantitatively that the species animal-to-background colour matching falls within the range of other species that are widely recognised as cryptic. Thus, their coloration is an adaptation to provide background matching in the visual environment in which they live and simultaneously to afford distance-dependent disruptive coloration, the latter of which constitutes the first computational evidence of this form of protective coloration in mammals.

11.
Microbiome ; 9(1): 192, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-34548111

RESUMO

BACKGROUND: Flavonoids are important plant secondary metabolites (PSMs) that have been widely used for their health-promoting effects. However, little is known about overall flavonoid metabolism and the interactive effects between flavonoids and the gut microbiota. The flavonoid-rich bamboo and the giant panda provide an ideal system to bridge this gap. RESULTS: Here, integrating metabolomic and metagenomic approaches, and in vitro culture experiment, we identified 97 flavonoids in bamboo and most of them have not been identified previously; the utilization of more than 70% flavonoid monomers was attributed to gut microbiota; the variation of flavonoid in bamboo leaves and shoots shaped the seasonal microbial fluctuation. The greater the flavonoid content in the diet was, the lower microbial diversity and virulence factor, but the more cellulose-degrading species. CONCLUSIONS: Our study shows an unprecedented landscape of beneficial PSMs in a non-model mammal and reveals that PSMs remodel the gut microbiota conferring host adaptation to diet transition in an ecological context, providing a novel insight into host-microbe interaction. Video abstract.


Assuntos
Microbioma Gastrointestinal , Ursidae , Animais , Dieta , Microbioma Gastrointestinal/genética , Metagenoma , Metagenômica
13.
Environ Int ; 155: 106703, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139588

RESUMO

The mammal gut is a rich reservoir of antibiotic resistance genes (ARGs), and the relationship between bacterial communities and ARGs has been widely studied. Despite ecological significance of microeukaryotes (fungi and protists), our understanding of their roles in the mammal gut microbiome and antibiotic resistome is still limited. Here, we used amplicon sequencing, metagenomic sequencing and high-throughput quantitative PCR to examine microbiomes and antibiotic resistomes of 41 giant panda fecal samples from individuals with different genders, ages, sampling sites and diet. Our results show that diverse protists inhabit in the giant panda gut ecosystem, dominated by consumers. Higher abundance of protistan consumers was detected in the elder compared to sub-adult and adult giant pandas. Diet is the main driving factor of variation in ARGs in the giant panda gut microbiome. Weighted correlation network analysis identified two key microbial modules from multitrophic communities, which all contributed to the variation in ARGs in the giant panda gut. Protists occupied an important position in the two modules which were dominated by fungal taxa. Deterministic processes made a more important contribution to microbial community assembly of the two modules than to bacterial, fungal and protistan communities. This study sheds new light on how key microbial modules contribute to the variation in ARGs, which is crucial in understanding dynamics of antibiotic resistome in the mammal gut, particularly endangered species.


Assuntos
Microbioma Gastrointestinal , Microbiota , Ursidae , Animais , Antibacterianos , Feminino , Fungos/classificação , Genes Bacterianos , Masculino
16.
Sci Adv ; 7(4)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523945

RESUMO

Genetic diversity and phylogenetic diversity reflect the evolutionary potential and history of species, respectively. However, the levels and spatial patterns of genetic and phylogenetic diversity of wildlife at the regional scale have largely remained unclear. Here, we performed meta-analyses of genetic diversity in Chinese terrestrial vertebrates based on three genetic markers and investigated their phylogenetic diversity based on a dated phylogenetic tree of 2461 species. We detected strong positive spatial correlations among mitochondrial DNA-based genetic diversity, phylogenetic diversity, and species richness. Moreover, the terrestrial vertebrates harbored higher genetic and phylogenetic diversity in South China and Southwest China than in other regions. Last, climatic factors (precipitation and temperature) had significant positive effects while altitude and human population density had significant negative impacts on levels of mitochondrial DNA-based genetic diversity in most cases. Our findings will help guide national-level genetic diversity conservation plans and a post-2020 biodiversity conservation framework.

17.
ISME J ; 15(7): 2070-2080, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33568789

RESUMO

Mammalian chemosignals-or scent marks-are characterized by astounding chemical diversity, reflecting both complex biochemical pathways that produce them and rich information exchange with conspecifics. The microbiome of scent glands was thought to play prominent role in the chemical signal synthesis, with diverse microbiota metabolizing glandular products to produce odorants that may be used as chemosignals. Here, we use gas chromatography-mass spectrometry and metagenomic shotgun sequencing to explore this phenomenon in the anogenital gland secretions (AGS) of the giant panda (Ailuropoda melanoleuca). We find that this gland contains a diverse community of fermentative bacteria with enzymes that support metabolic pathways (e.g., lipid degradation) for the productions of volatile odorants specialized for chemical communication. We found quantitative and qualitative differences in the microbiota between AGS and digestive tract, a finding which was mirrored by differences among chemical compounds that could be used for olfactory communication. Volatile chemical compounds were more diverse and abundant in AGS than fecal samples, and our evidence suggests that metabolic pathways have been specialized for the synthesis of chemosignals for communication. The panda's microbiome is rich with genes coding for enzymes that participate in the fermentation pathways producing chemical compounds commonly deployed in mammalian chemosignals. These findings illuminate the poorly understood phenomena involved in the role of symbiotic bacteria in the production of chemosignals.


Assuntos
Glândulas Odoríferas , Ursidae , Animais , Bactérias/genética , Odorantes , Feromônios
19.
Mol Biol Evol ; 38(2): 531-544, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-32960966

RESUMO

Antagonistic coevolution between host and parasite drives species evolution. However, most of the studies only focus on parasitism adaptation and do not explore the coevolution mechanisms from the perspective of both host and parasite. Here, through the de novo sequencing and assembly of the genomes of giant panda roundworm, red panda roundworm, and lion roundworm parasitic on tiger, we investigated the genomic mechanisms of coevolution between nonmodel mammals and their parasitic roundworms and those of roundworm parasitism in general. The genome-wide phylogeny revealed that these parasitic roundworms have not phylogenetically coevolved with their hosts. The CTSZ and prolyl 4-hydroxylase subunit beta (P4HB) immunoregulatory proteins played a central role in protein interaction between mammals and parasitic roundworms. The gene tree comparison identified that seven pairs of interactive proteins had consistent phylogenetic topology, suggesting their coevolution during host-parasite interaction. These coevolutionary proteins were particularly relevant to immune response. In addition, we found that the roundworms of both pandas exhibited higher proportions of metallopeptidase genes, and some positively selected genes were highly related to their larvae's fast development. Our findings provide novel insights into the genetic mechanisms of coevolution between nonmodel mammals and parasites and offer the valuable genomic resources for scientific ascariasis prevention in both pandas.


Assuntos
Ascaridoidea/genética , Coevolução Biológica , Genoma Helmíntico , Interações Hospedeiro-Parasita/genética , Tigres/parasitologia , Ursidae/parasitologia , Animais , Filogenia , Mapas de Interação de Proteínas , Seleção Genética , Tigres/genética , Tigres/metabolismo , Ursidae/genética , Ursidae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...