Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Sci Total Environ ; 862: 160729, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36496017

RESUMO

The increasing and intensifying ultraviolet B (UVB) radiation in sunlight is an environmental threat to aquatic ecosystems, potentially affecting the entire life cycle of wild or aquacultural Pacific oyster Crassostrea gigas with photoreception. Due to its complex composition, plasma is an important biological specimen for investigating the degree of disturbance from its steady state caused by the external environment in the open-pipe-type hemolymph of mollusks. We performed a multi-omic analysis of C. gigas plasma exposed to daylight UVB radiation. Hub differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were identified using the functional classification of Clusters of Orthologous Groups of proteins (COGs) through the protein-protein interaction (PPI)-based maximal clique centrality (MCC) algorithm. Our results summarize three types of UVB influences (disruption of the cell membrane, promotion of nucleotide metabolism, and inhibition of energy metabolism) on C. gigas based on transcriptomic, proteomic, and metabolomic analyses. The associated hub DEGs, DEPs (e.g., nucleoside diphosphate kinase, malate dehydrogenase, and hydroxyacyl-coenzyme A dehydrogenase), and metabolites (e.g., uridine, adenine, deoxyguanosine, guanosine, and xylitol) in the plasma were identified as biomarkers of mollusk response to UVB radiation, and could be used to evaluate the influence of environmental UVB on mollusks in future studies.


Assuntos
Crassostrea , Proteômica , Animais , Proteômica/métodos , Ecossistema , Metabolismo Energético , Crassostrea/fisiologia , Membrana Celular/metabolismo , Nucleotídeos/metabolismo
2.
Fish Shellfish Immunol ; 132: 108497, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36539167

RESUMO

The interferon regulatory factor (IRF) family, a class of transcription factors with key functions, are important in host innate immune defense and stress response. However, further research is required to determine the functions of IRFs in invertebrates. In this study, the coding sequence of an IRF gene was obtained from the Zhikong scallop (Chlamys farreri) and named CfIRF8-like. The open reading frame of CfIRF8-like was 1371 bp long and encoded 456 amino acids. Protein domain prediction revealed a typical IRF domain in the N-terminus of the CfIRF8-like protein and a typical IRF3 domain in the C-terminus. Multiple sequence alignment confirmed the conservation of the amino acid sequences of these two functional protein domains. Phylogenetic analysis showed that CfIRF8-like clustered with mollusk IRF8 proteins and then clustered with vertebrate IRF3, IRF4, and IRF5 subfamily proteins. Quantitative real-time PCR detected CfIRF8-like mRNA in all tested scallop tissues, with the highest expression in the gills. Simultaneously, the expression of CfIRF8-like transcripts in gills was significantly induced by polyinosinic-polycytidylic acid challenge. The results of protein interaction experiments showed that CfIRF8-like could directly bind the TBK1/IKKε family protein of scallop (CfIKK2) via its N-terminal IRF domain, revealing the presence of an ancient functional TBK1/IKKε-IRF signaling axis in scallops. Finally, dual-luciferase reporter assay results showed that the overexpression of CfIRF8-like in human embryonic kidney 293T cells could specifically activate the interferon ß promoter of mammals and the interferon-stimulated response element promoter in dose-dependent manners. The findings of this preliminary analysis of the signal transduction and immune functions of scallop CfIRF8-like protein lay a foundation for an in-depth understanding of the innate immune function of invertebrate IRFs and the development of comparative immunology. The experimental results also provide theoretical support for the breeding of scallop disease-resistant strains.


Assuntos
Antivirais , Quinase I-kappa B , Animais , Humanos , Quinase I-kappa B/genética , Filogenia , Imunidade Inata/genética , Transdução de Sinais , Mamíferos/metabolismo , Proteínas Serina-Treonina Quinases/genética
3.
Front Neurosci ; 16: 987248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523439

RESUMO

Introduction: Understanding the neurological basis of autism spectrum disorder (ASD) is important for the diagnosis and treatment of this mental disorder. Emerging evidence has suggested aberrant functional connectivity of large-scale brain networks in individuals with ASD. However, whether the effective connectivity which measures the causal interactions of these networks is also impaired in these patients remains unclear. Objects: The main purpose of this study was to investigate the effective connectivity of large-scale brain networks in patients with ASD during resting state. Materials and methods: The subjects were 42 autistic children and 127 age-matched normal children from the ABIDE II dataset. We investigated effective connectivity of 7 large-scale brain networks including visual network (VN), default mode network (DMN), cerebellum, sensorimotor network (SMN), auditory network (AN), salience network (SN), frontoparietal network (FPN), with spectral dynamic causality model (spDCM). Parametric empirical Bayesian (PEB) was used to perform second-level group analysis and furnished group commonalities and differences in effective connectivity. Furthermore, we analyzed the correlation between the strength of effective connectivity and patients' clinical characteristics. Results: For both groups, SMN acted like a hub network which demonstrated dense effective connectivity with other large-scale brain network. We also observed significant causal interactions within the "triple networks" system, including DMN, SN and FPN. Compared with healthy controls, children with ASD showed decreased effective connectivity among some large-scale brain networks. These brain networks included VN, DMN, cerebellum, SMN, and FPN. In addition, we also found significant negative correlation between the strength of the effective connectivity from right angular gyrus (ANG_R) of DMN to left precentral gyrus (PreCG_L) of SMN and ADOS-G or ADOS-2 module 4 stereotyped behaviors and restricted interest total (ADOS_G_STEREO_BEHAV) scores. Conclusion: Our research provides new evidence for the pathogenesis of children with ASD from the perspective of effective connections within and between large-scale brain networks. The attenuated effective connectivity of brain networks may be a clinical neurobiological feature of ASD. Changes in effective connectivity of brain network in children with ASD may provide useful information for the diagnosis and treatment of the disease.

4.
Molecules ; 27(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36500261

RESUMO

High-energy density supercapacitors have attracted extensive attention due to their electrode structure design. A synergistic effect related to core-shell structure can improve the energy storage capacity and power density of electrode materials. The Ni-foam (NF) substrate coupled with polypyrrole (PPy) conductive coating can serve as an internal/external bicontinuous conductive network. In this work, the distinctive PPy@FeNi2S4@NF and PPy@NiCo2S4@NF materials were prepared by a simple two-step hydrothermal synthesis with a subsequent in situ polymerization method. PPy@FeNi2S4@NF and PPy@NiCo2S4@NF could deliver ultrahigh specific capacitances of 3870.3 and 5771.4 F·g-1 at 1 A·g-1 and marvelous cycling capability performances of 81.39% and 93.02% after 5000 cycles. The asymmetric supercapacitors composed of the prepared materials provided a high-energy density of over 47.2 Wh·kg-1 at 699.9 W·kg-1 power density and 67.11 Wh·kg-1 at 800 W·kg-1 power density. Therefore, the self-assembled core-shell structure can effectively improve the electrochemical performance and will have an effective service in advanced energy-storage devices.


Assuntos
Polímeros , Pirróis , Condutividade Elétrica , Capacitância Elétrica , Eletrodos
5.
Clin Cosmet Investig Dermatol ; 15: 2751-2762, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545501

RESUMO

Background: Gender difference is prevalent in clinical feature, disease severity for noncommunicable diseases (NCD), but studies on gender disparity in clinical feature, disease severity and NCD comorbidity among psoriasis patients are limited. This cross-sectional study explores gender differences in clinical feature, lifestyle behavior and NCD comorbidity among psoriasis patients. Methods: Psoriasis patients were recruited through cluster survey method in two hospitals, and questionnaire interviews were applied to collect the demographic feature, lifestyle habits, clinical feature and NCD among patients. Results: A total of 2102 psoriasis patients included 1332 males (63.4%), 70% were over 35 years old and approximately 50% of them were overweight or obesity. The median value for psoriasis initiation age and disease duration was 33 years old (34 for male and 32 for female) and 9 years (10 for male and 7 for female), respectively. The psoriasis recurrence was mainly in winter (73.4%) and autumn (34.2%) both for patients. The prevalence of tobacco smoking and alcohol drinking was 31.2% and 12.6%. Male patients had higher prevalence of tobacco smoking (odds ratio (OR) = 13.26, 95% confidence interval (CI): 9.54-18.44) and alcohol drinking (OR = 14.44, 95% CI: 7.90-26.40). The prevalence of diabetes, hypertension, hyperlipidemia, and metabolic syndrome were 13.2%, 28.5%, 23.4% and 21.5%, respectively. Male patients had higher prevalence of diabetes (OR = 1.53, 95% CI: 1.16-2.02), hypertension (OR = 1.87, 95% CI: 1.52-2.30), hyperlipidemia (OR = 2.34, 95% CI: 1.85-2.95) and metabolic syndrome (OR = 2.06, 95% CI: 1.63-2.62) than female patients. The proportions for 4 types of NCDs diagnosed after psoriasis onset were over 58%, which were also higher in males than females. Conclusion: Female patients had shorter disease duration and with less NCD, and male patients had more body weight issue, with fewer sleep time and higher prevalence of tobacco smoking and alcohol drinking and NCDs. We recommend that dermatologist should notice the gender disparity in psoriasis patients, which is helpful for the disease diagnosis and treatment.

6.
Nat Commun ; 13(1): 7936, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566293

RESUMO

Molecular recognition is an attractive approach to designing sensitive and selective sensors for volatile organic compounds (VOCs). Although organic macrocycles and cages have been well-developed for recognising organics by their adaptive pockets in liquids, porous solids for gas detection require a deliberate design balancing adaptability and robustness. Here we report a dynamic 3D covalent organic framework (dynaCOF) constructed from an environmentally sensitive fluorophore that can undergo concerted and adaptive structural transitions upon adsorption of gas and vapours. The COF is capable of rapid and reliable detection of various VOCs, even for non-polar hydrocarbon gas under humid conditions. The adaptive guest inclusion amplifies the host-guest interactions and facilitates the differentiation of organic vapours by their polarity and sizes/shapes, and the covalently linked 3D interwoven networks ensure the robustness and coherency of the materials. The present result paves the way for multiplex fluorescence sensing of various VOCs with molecular-specific responses.

7.
Sci Adv ; 8(51): eade2450, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36563155

RESUMO

Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.

8.
Biofabrication ; 15(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36579621

RESUMO

Dynamic regulation of wound physiological signals is the basis of wound healing. Conventional biomaterials delivering growth factors to drive wound healing leads to the passive repair of soft tissues because of the mismatch of wound healing stages. Meanwhile, the bioactivity of wound exudate is often restricted by oxidation and bacterial contamination. Herein, an extracellular matrix mimicked nanofiber/hydrogel interpenetrated network (NFHIN) was constructed with a 3D nanofibrous framework for cell immigration, and interfiled aerogel containing cross-linked hyaluronic acid and hyperbranched polyamidoamine to balance the wound microenvironment. The aerogel can collect wound exudate and transform into a polycationic hydrogel with contact-killing effects even against intracellular pathogens (bactericidal rate > 99.9% in 30 min) and real-time scavenging property of reactive oxygen species. After co-culturing with the NFHIN, the bioactivity of fibroblast in theex vivoblister fluid was improved by 389.69%. The NFHIN showed sustainable exudate management with moisture-vapor transferring rate (6000 g m-2×24 h), equilibrium liquid content (75.3%), Young's modulus (115.1 ± 7 kPa), and anti-tearing behavior similar to human skin. The NFHIN can collect and activate wound exudate, turning it from a clinical problem to an autoimmune-derived wound regulation system, showing potential for wound care in critical skin diseases.


Assuntos
Hidrogéis , Nanofibras , Humanos , Hidrogéis/farmacologia , Cicatrização , Matriz Extracelular , Bandagens , Exsudatos e Transudatos
9.
Adv Mater ; : e2205578, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36576865

RESUMO

The construction of transparent ceramics under mild conditions under 1000°C and standard atmospheric pressure has great scientific and technological potential; however, it remains difficult to achieve when conventional ceramic sintering techniques are used. Herein, we present a mild strategy for constructing dual-phase optical ceramics with high crystallinity (>90%) based on the stepped dual-phase crystallization of hybridized aluminosilicate glass. Theoretical and experimental studies reveal that the hybridization of the glass system enables a new balance between the glass-forming ability and crystallization and can overcome the uncontrolled devitrification phenomenon during the dense crystallization of glass. Transparent hybridized oxide-fluoride ceramics with fiber geometry and dual-phase microstructures are also successfully fabricated. The generality of the strategy is confirmed, and transparent ceramics with various chemical compositions and phase combinations are prepared. Additionally, the cross section of the ceramic fibers can be easily tuned into a circle, square, trapezoid, and even a triangle. Furthermore, the practical applications of the optical ceramics for lighting and X-ray imaging are demonstrated. The findings described here suggest a major step toward expanding the scope of optical ceramics. This article is protected by copyright. All rights reserved.

10.
STAR Protoc ; 3(4): 101831, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36386883

RESUMO

Unfolding the "black-box" associations between genotype and phenotype is essential for understanding the molecular mechanisms of complex human diseases. Here, we describe the use of GRPath to uncover putative causal paths (pcPaths) from genetic variants to disease phenotypes. GRPath takes multiple omics data and summary statistics as input and identifies pcPaths that link the putative causal region (pcRegion), putative causal variant (pcVariant), putative causal gene (pcGene), noteworthy cell type, and disease phenotype. For complete details on the use and execution of this protocol, please refer to Xi et al. (2022).1.


Assuntos
Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Fenótipo , Genótipo , Causalidade
11.
Nat Commun ; 13(1): 7097, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402785

RESUMO

Flexible sensors, friendly interfaces, and intelligent recognition are important in the research of novel human-computer interaction and the development of smart devices. However, major challenges are still encountered in designing user-centered smart devices with natural, convenient, and efficient interfaces. Inspired by the characteristics of textile-based flexible electronic sensors, in this article, we report a braided electronic cord with a low-cost, and automated fabrication to realize imperceptible, designable, and scalable user interfaces. The braided electronic cord is in a miniaturized form, which is suitable for being integrated with various occasions in life. To achieve high-precision interaction, a multi-feature fusion algorithm is designed to recognize gestures of different positions, different contact areas, and different movements performed on a single braided electronic cord. The recognized action results are fed back to varieties of interactive terminals, which show the diversity of cord forms and applications. Our braided electronic cord with the features of user friendliness, excellent durability and rich interaction mode will greatly promote the development of human-machine integration in the future.


Assuntos
Eletrônica , Têxteis , Humanos , Gestos
12.
Front Pediatr ; 10: 1022268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340715

RESUMO

Background: Ryanodine receptor 2 (RYR2) encodes a component of a calcium channel. RYR2 variants were well-reported to be associated with catecholaminergic polymorphic ventricular tachycardia (CPVT), but rarely reported in epilepsy cases. Here, we present a novel heterozygous mutation of RYR2 in a child with focal epilepsy. Methods: At the age of 2 years and 7 months, the patient experienced seizures, such as eye closure, tooth clenching, clonic jerking and hemifacial spasm, as well as abnormal electroencephalogram (EEG). Then, he was analyzed by whole-exome sequencing (WES). The mutations of both the proband and his parents were further confirmed by Sanger sequencing. The pathogenicity of the variant was further assessed by population-based variant frequency screening, evolutionary conservation comparison, and American Association for Medical Genetics and Genomics (ACMG) scoring. Results: WES sequencing revealed a novel heterozygous truncating mutation [c.12670G > T, p.(Glu4224*), NM_001035.3] in RYR2 gene of the proband. Sanger sequencing confirmed that this mutation was inherited from his mother. This novel variant was predicted to be damaging by different bioinformatics methods. Cardiac investigation showed that the proband had no structural abnormalities, but sinus tachycardia. Conclusion: We proposed that RYR2 is a potential candidate gene for focal epilepsy, and epilepsy patients carried with RYR2 variants should be given more attention, even if they do not show cardiac abnormalities.

13.
Innovation (Camb) ; 3(6): 100340, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36353672

RESUMO

With the advent of the Internet of Everything, people can easily interact with their environments immersively. The idea of pervasive computing is becoming a reality, but due to the inconvenience of carrying silicon-based entities and a lack of fine-grained sensing capabilities for human-computer interaction, it is difficult to ensure comfort, esthetics, and privacy in smart spaces. Motivated by the rapid developments in intelligent fabric technology in the post-Moore era, we propose a novel computing approach that creates a paradigm shift driven by fabric computing and advocate a new concept of non-chip sensing in living spaces. We discuss the core notion and benefits of fabric computing, including its implementation, challenges, and future research opportunities.

14.
BMC Genomics ; 23(1): 770, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424546

RESUMO

BACKGROUND: Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS: Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS: The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.


Assuntos
Ericales , Genoma Mitocondrial , Primula , Genoma Mitocondrial/genética , Primula/genética , Filogenia , Ericales/genética , Evolução Molecular , DNA Mitocondrial/genética , Nucleotídeos
15.
Nat Commun ; 13(1): 7309, 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36437260

RESUMO

Methane is supersaturated in surface seawater and shallow coastal waters dominate global ocean methane emissions to the atmosphere. Aerobic methane oxidation (MOx) can reduce atmospheric evasion, but the magnitude and control of MOx remain poorly understood. Here we investigate methane sources and fates in the East China Sea and map global MOx rates in shallow waters by training machine-learning models. We show methane is produced during methylphosphonate decomposition under phosphate-limiting conditions and sedimentary release is also source of methane. High MOx rates observed in these productive coastal waters are correlated with methanotrophic activity and biomass. By merging the measured MOx rates with methane concentrations and other variables from a global database, we predict MOx rates and estimate that half of methane, amounting to 1.8 ± 2.7 Tg, is consumed annually in near-shore waters (<50 m), suggesting that aerobic methanotrophy is an important sink that significantly constrains global methane emissions.


Assuntos
Metano , Água do Mar , Oxirredução , Atmosfera , Difusão
16.
Int J Mol Sci ; 23(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36361629

RESUMO

Retinoic acid (RA) plays important roles in various biological processes in animals. RA signaling is mediated by two types of nuclear receptors, namely retinoic acid receptor (RAR) and retinoid x receptor (RXR), which regulate gene expression by binding to retinoic acid response elements (RAREs) in the promoters of target genes. Here, we explored the effect of all-trans retinoic acid (ATRA) on the Pacific oyster Crassostera gigas at the transcriptome level. A total of 586 differentially expressed genes (DEGs) were identified in C. gigas upon ATRA treatment, with 309 upregulated and 277 downregulated genes. Bioinformatic analysis revealed that ATRA affects the development, metabolism, reproduction, and immunity of C. gigas. Four tyrosinase genes, including Tyr-6 (LOC105331209), Tyr-9 (LOC105346503), Tyr-20 (LOC105330910), and Tyr-12 (LOC105320007), were upregulated by ATRA according to the transcriptome data and these results were verified by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. In addition, increased expression of Tyr (a melanin-related TYR gene in C. gigas) and Tyr-2 were detected after ATRA treatment. The yeast one-hybrid assay revealed the DNA-binding activity of the RA receptors CgRAR and CgRXR, and the interaction of CgRAR with RARE present in the Tyr-2 promoter. These results provide evidence for the further studies on the role of ATRA and the mechanism of RA receptors in mollusks.


Assuntos
Crassostrea , Tretinoína , Animais , Tretinoína/farmacologia , Tretinoína/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Crassostrea/genética , Crassostrea/metabolismo , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/genética , Receptores X de Retinoides/metabolismo , Expressão Gênica , Regulação da Expressão Gênica
17.
Nanoscale Horiz ; 7(12): 1501-1512, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36254659

RESUMO

Aqueous fibrous batteries with tiny volume, light weight and stretchability have furthered wearable smart textile systems like biocompatible electronics for a more efficient use of electricity. Challenges still faced by fibrous batteries include not only the deficient actual capacity but the cyclability on the cathode side. Herein, an in situ anodic oxidation strategy is reported to prepare 3D N-doped/defect-rich V2O5-x·nH2O nanosheets (DVOH@NC) as fibrous cathodes for aqueous zinc-ion batteries (AZIBs). Benefiting from the substantially abundant reaction sites, enhanced electrical conductivity, short electron/ion diffusion path and high mass loading, the newly designed DVOH@NC fibrous electrode delivers impressive capacity (711.9 mA h cm-3 at 0.3 A cm-3) and long-term durability (95.5% capacity retention after 3000 cycles), substantially outperforming previously reported fibrous vanadium-based cathodes. First-principles density functional theory (DFT) calculations further revealed that the oxygen vacancies can weaken the electrostatic interaction between Zn2+ and the host cathode accompanying the low Zn2+ diffusion energy barrier. To highlight the potential applications, a prototype wearable fiber-shaped AZIB (FAZIB) with remarkable flexibility and extraordinary weaving capability was demonstrated. More encouragingly, the resulting FAZIB could be charged with solar cells and power a pressure sensor. Thus, our work provides a promising strategy to rationally construct high-performance flexible vanadium-based cathodes for next-generation wearable AZIBs.


Assuntos
Carbono , Vanádio , Fontes de Energia Elétrica , Íons , Zinco
18.
Anticancer Drugs ; 33(10): 1069-1080, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36255068

RESUMO

BACKGROUND: Circular RNAs can act as critical regulators in the tumorigenesis and chemoresistance of ovarian cancer (OC). Herein, this work aimed to probe the function and mechanism of circ_0026123 in the cisplatin (DDP) resistance and progression of OC and its potential value in the clinic. METHODS: The quantitative real-time PCR and western blotting were used to detect the levels of RNAs and proteins. In vitro experiments were conducted using CCK-8, EdU, transwell, tube formation assays and flow cytometry. Mouse subcutaneous xenograft model was used for in vivo experiments. The interaction between circ_0026123 or RAB1A (Ras-related protein Rab-1A) and miR-543 was confirmed using dual-luciferase reporter and RNA immunoprecipitation assays. RESULTS: Circ_0026123 expression was higher in DDP-resistant OC tissues and cells. Silencing of circ_0026123 dramatically boosted the sensitivity of DDP-resistant OC cells to DDP, as well as inhibited cell growth, angiogenesis, invasion and migration abilities in vitro. Circ_0026123 functionally targeted miR-543, and knockdown of miR-543 reversed the impacts of circ_0026123 deficiency on DDP sensitivity and the malignant behaviors of DDP-resistant OC cells. RAB1A was a target of miR-543, RAB1A overexpression attenuated the inhibitory functions of miR-543 on DDP resistance and the malignant phenotypes of DDP-resistant OC cells. Preclinically, lentivirus-mediated circ_0026123 downregulation also suppressed OC growth and enhanced DDP cytotoxicity in vivo. CONCLUSION: Our study demonstrated that circ_0026123 acted as a sponge for miR-543 to elevate RAB1A expression, thus promoting cisplatin resistance and tumorigenesis in ovarian cancer.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Proteínas rab1 de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Carcinogênese , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , RNA Circular/genética , Proteínas rab1 de Ligação ao GTP/genética
19.
J Orthop Res ; 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203347

RESUMO

Lateral ankle sprains (LAS) might lead to joint sensory deafferentation, which induces maladaptive neuroplasticity, especially the morphological atrophy of the cerebellar vermis. However, longitudinal evidence on the causality of injury and neural differences is still lacking. To this end, this study aimed to determine whether the morphology of the central nervous system would be altered before and after ligament transection in LAS mouse models. A total of 40 C57BL/6 mice were randomly divided among the LAS, Sham and Blank groups. We repeatedly performed the balance beam test and neural voxel-based morphometry (VBM) measurements using an 11.7 T magnetic resonance imaging before and 2 months after the surgery. The results showed that for balance outcomes, the LAS group had a significantly longer time and more slips of the balance beam tests compared with the Sham and Blank groups at 2 months after surgery, with no significant difference among the three groups before surgery. Regarding the VBM analysis, the LAS group showed significantly lower VBM values in the central lobule III of the cerebellar vermis and medial amygdalar nucleus (MEA) compared with the Sham and Blank groups after surgery, with no significant difference among the three groups before surgery. In conclusion, lateral ligament injuries might lead to morphological atrophy of the cerebellar vermis in animal models, which might pave the way for the pathological process of ankle instability after LAS.

20.
Int J Biol Macromol ; 222(Pt A): 1250-1263, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36191792

RESUMO

The interferon regulatory factor (IRF) family comprises transcription factors that are crucial in immune defense, stress response, reproduction, and development. However, the function of IRFs in invertebrates is unclear. Here, the full-length cDNA of an IRF-encoding gene (CfIRF1) in the Zhikong scallop (Chlamys farreri) comprising 2007 bp with an open reading frame of 1053 bp that encoded 350 amino acids was characterized, and its immune function was studied. The CfIRF1 protein contained a typical IRF domain at its N-terminus. CfIRF1 was clustered with other proteins of the IRF1 subfamily, implying that they were closely related. CfIRF1 mRNA transcripts could be detected in all tested scallop tissues, with the highest expression observed in the gills and hepatopancreas. CfIRF1 expression was significantly induced by the polyinosinic-polycytidylic acid and acute viral necrosis virus challenge. CfIRF1 could directly interact with myeloid differentiation primary response protein 88 (MyD88), the key adaptor molecule of the toll-like receptor signaling pathway. CfIRF1 did not interact with scallop IKK1 (IKKα/ß family protein), IKK2, IKK3 (IKKε/TBK1 family protein), or with other IRF family proteins (IRF2 or IRF3). However, CfIRF1 interacted with itself to form a homodimer. CfIRF1 could specifically activate the interferon ß promoter of mammals and the promoter containing the interferon-stimulated response element (ISRE) in a dose-dependent manner. The truncated form of CfIRF1 had a significantly reduced ISRE activation ability, indicating that structural integrity was crucial for CfIRF1 to function as a transcription factor. Our findings provide insights into the functions of mollusk IRFs in innate immunity. The research results also provide valuable information that enriches the theory of comparative immunology and that can help prevent diseases in scallop farming.


Assuntos
Antivirais , Pectinidae , Animais , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/metabolismo , Antivirais/metabolismo , Pectinidae/genética , Imunidade Inata/genética , Poli I-C/farmacologia , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...