Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Intervalo de ano de publicação
Nanoscale ; 13(17): 8012-8016, 2021 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-33884397


While photodynamic therapy (PDT) of cancer has attracted much recent attention, its general applications are limited by the shallow tissue penetration depth of short-wavelength photons and the low oxygen contents in typical solid tumors. Herein, we develop small molecule (BthB)-based nanoparticles (NPs) which not only generate heat for effective photothermal therapy (PTT), but also generate superoxide radicals (O2˙-) for hypoxia-overcoming photodynamic therapy (PDT) upon irradiation with an 808 nm laser. To the best of our knowledge, there are few reports of organic PDT agents which can work in hypoxia upon irradiation with photons having wavelengths longer than 800 nm. With the merits of NIR-excitability for better penetration depth, the BthB NPs are demonstrated both in vitro and in vivo to be highly effective for cancer ablation.

Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Hipóxia , Nanomedicina , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Oxigênio Singlete , Superóxidos
ACS Nano ; 14(8): 9917-9928, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32706236


Effective multimodality phototheranostics under deep-penetration laser excitation is highly desired for tumor medicine, which is still at a deadlock due to lack of versatile photosensitizers with absorption located in the long-wavelength region. Herein, we demonstrate a stable organic photosensitizer nanoparticle based on molecular engineering of benzo[c]thiophene (BT)-based photoactivated molecules with strong wavelength-tunable absorption in the near-infrared region. Via molecular design, the absorption and singlet oxygen generation of BT molecules would be reliably tuned. Importantly, the nanoparticles with a red-shifted absorption peak of 843 nm not only show over 10-fold reactive oxygen species yield compared with indocyanine green but also demonstrate a notable photothermal effect and photoacoustic signal upon 808 nm excitation. The in vitro and in vivo experiments substantiate good multimodal anticancer efficacy and imaging performance of BT theranostics. This work provides an organic photosensitizer nanoparticle with long-wavelength excitation and high photoenergy conversion efficiency for multimodality phototherapy.

Nanopartículas , Fármacos Fotossensibilizantes , Fototerapia , Espécies Reativas de Oxigênio , Nanomedicina Teranóstica