Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
J Colloid Interface Sci ; 601: 294-304, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34082233

RESUMO

In this work, a highly efficient adsorbent based on ionic liquid functionalized MXene has been fabricated through the combination of mussel-inspired chemistry and Michael addition reaction. The surface of MXene was first coated with polydopamine (PDA) through self-polymerization of dopamine and the amino groups were introduced on the surface of MXene simultaneously. After that, the ene bond-containing ionic liquid was further immobilized on the surface of MXene-PDA to obtain MXene-PDA-IL. As a concept, the adsorptive removal of iodine using MXene-PDA-IL was conducted and the effects of various factors on the adsorption behavior were examined. The experimental data were analyzed by intermittent adsorption experiments, the adsorption kinetics, adsorption isotherm, adsorption thermodynamics, and cyclic adsorption experiments. We found that the adsorption procedure could reach equilibrium within 10 min after mixing adsorbent and iodine. The maximum adsorption capacity of MXene-PDA-IL towards iodine was as high as 695.4 mg g-1, which is greater than most of reported adsorbents. Considered the advantages of mussel-inspired chemistry for surface functionalization and the adsorption capacity of ionic liquids, the method could be used for construct a number of composites with potential for adsorption applications.

2.
Int J Biol Macromol ; 182: 2066-2075, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34087297

RESUMO

Herein, a novel strategy for surface functionalization and drug loading of cellulose nanocrystals (CNCs) through formation of hydrazone bonds between functionalized CNCs and aldehyde group containing polyethylene glycol (CHO-PEG)/anticancer drug doxorubicin (DOX) was reported for the first time. DOX could be loaded on PEGylated CNCs with high capacity and released from drug complexes (P-CNCs-D) with pH dependent behavior. The biological evaluation results demonstrated that drug carriers (CNCs-EBO-NH) showed negative cytotoxicity while DOX could be transported into cells and exhibits desirable anticancer effects. As compared with other method, the method developed in this work is rather simple and effective and can be achieved for simultaneous for surface functionalization and drug loading in a one-pot route. This work will open a new avenue for fabrication of various multifunctional composites based on other carbohydrate polymers or materials and to explore their applications in biomedical fields.

3.
Biomater Sci ; 9(11): 3979-3988, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085077

RESUMO

The radio-resistance of tumor tissues has been considered a great challenge for cancer radiotherapy (RT).The development of nanoparticle (NP)-based radio-sensitizers can enhance the radio-sensitization of tumor tissues while reducing the side effects to surrounding tissues. However, most of the nano-radiosensitizers show increased radiation deposition with a high-Z element but achieve limited enhancement. Herein, we investigated polyethylene glycol (PEG)-modified gold-iron selenide nanocomposites (Au-FeSe2 NCs) for simultaneously enhancing therapeutic effects in multiple ways. In this study, the high-Z element Au (Z = 79) endows Au-FeSe2 NCs with enhanced X-ray deposition and thus causes more DNA damage. On the other hand, Au-FeSe2 exhibits the ability to produce reactive oxygen species (ROS) by catalyzing endogenous hydrogen peroxide in tumor sites as well as improve the hydrogen peroxide level during ionizing irradiation. Finally, combined with photothermal therapy (PTT), Au-FeSe2 NCs could exhibit a remarkable RT/PTT synergistic effect on tumor treatment.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Linhagem Celular Tumoral , Ouro , Ferro , Estresse Oxidativo
4.
ACS Nano ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34061509

RESUMO

The active color-changing ability of many living species has inspired scientists to replicate the optical property into soft wet and tissue-like hydrogel materials. However, the color-changing processes of most reported examples are controlled by the traditional stimuli (e.g., pH, temperature, and ions), which may suffer from the residual chemical product accumulation, and have difficulty in achieving local control and integration into the commercial robots, especially when applied as biomimetic skins. Herein, inspired by the nervous (bioelectricity) control of skin color change in cephalopods, we present an electrically powered multicolor fluorescent hydrogel system with asymmetric configuration that couples thermoresponsive fluorescent hydrogel with stacked graphene assembly (SGA)-based conductive paper through luminous paint as the middle layer. Owing to the highly controllable electrical stimulus in terms of amplitude and duration, the Joule heat supplied by SGA film can be regulated locally and in real time, leading to precise and local emission color control at low voltage. It also avoids the addition of any chemicals. Furthermore, the electrically powered color-changing hydrogel system can be conveniently integrated into the commercial robots as biomimetic skins that help them achieve desirable camouflage, display, or alarming functions.

5.
Theranostics ; 11(13): 6407-6426, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995665

RESUMO

In recent years, metal-phenolic networks (MPNs) have attracted increasing attention for the engineering of multi-functional platforms because of their easy fabrication processes, excellent physicochemical properties, outstanding biocompatibility, and promising theranostic applications. In this review, we summarize recent progress in the design, synthesis, shape-control, biocompatibility evaluation, and potential theranostic applications of MPNs, especially for cancer theranostics. First, we provide an overview of various MPN systems, relevant self-assembly procedures, and shape-controllable preparation. The in vitro and in vivo biocompatibility evaluation of MPNs is also discussed, including co-incubation viability, adhesion, bio-distribution, and inflammation. Finally, we highlight the significant achievements of various MPNs for cancer theranostics, such as tumor imaging, drug delivery, photothermal therapy, radiotherapy, and chemo- and photo-dynamic therapy. This review provides a comprehensive background on the design and controllable synthesis, in vitro and in vivo biocompatibility evaluation, applications of MPNs as cancer theranostic agents, and presents an overview of the most up-to-date achievements in this field.

6.
J Mater Chem B ; 9(13): 2979-2992, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33885662

RESUMO

Hydrogels are cross-linked hydrophilic macromolecules that contain a certain amount of water. Due to their biocompatible, highly tunable and hydrophilic nature, hydrogels have attracted much attention in the applications of chemical, biomedical and pharmaceutical fields over the past twenty years. In particular, thermo-sensitive hydrogels, which can undergo phase transition or swell/deswell as ambient temperature changes, endow the drug delivery system with enhanced local drug penetration, desirable spatial and temporal control, and improved drug bioavailability. These merits facilitate their extensive applications in drug delivery. In this review, we focus on advances in the development of different thermo-sensitive polymers as a scaffold for drug delivery, including poly(N-isopropylacrylamide) (pNIPAAM), poloxamer, polyethylene glycol/poly(lactic acid)co-(glycolic acid) (PEG/PLGA), and chitosan. The state-of-the-art thermo-sensitive hydrogels for various pharmaceutical applications, such as anti-tumor drug delivery, transdermal drug delivery, ocular drug delivery, nasal drug delivery, and buccal drug delivery, are elaborated. Finally, the future research perspectives and challenges are also discussed, which could facilitate the translation of thermo-sensitive hydrogels for drug delivery from bench to bedside.

7.
Sensors (Basel) ; 21(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669269

RESUMO

This paper presents a digitally controlled oscillator (DCO) with a low-complexity circuit structure that combines multiple delay circuits to achieve a high timing resolution and wide output frequency range simultaneously while also significantly reducing the overall power consumption. A 0.18 µm complementary metal-oxide-semiconductor standard process was used for the design, and measurements showed that the chip had a minimum controllable timing resolution of 4.81 ps and power consumption of 142 µW with an output signal of 364 MHz. When compared with other designs using advanced processes, the proposed DCO demonstrated the best power-to-frequency ratio. Therefore, it can output a signal at the required frequency more efficiently in terms of power consumption. Additionally, because the proposed DCO uses digital logic gates only, a cell-based design flow can be implemented. Hence, the proposed DCO is not only easy to implement in different processes but also easy to integrate with other digital circuits.

8.
Colloids Surf B Biointerfaces ; 202: 111687, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33730600

RESUMO

Chiral aggregation-induced emission luminogens (AIEgens) are the new-generation chiral sensors that regulate chiral signals from the molecular level to the macroscopic assembly. Expanding applications of chiral AIEgens and in-depth understanding of their chiral recognition in biological systems are meaningful. Herein, two star chiral AIEgens, consisting of tetraphenylethene (TPE) as core and poly(N-acryloyl-L(D) valine) (PLV or PDV) as arms, were precisely synthesized via atom transfer radical polymerization (ATRP) technique and named TPE-PLV and TPE-PDV. They possessed typical AIE characteristics and exhibited an increase in concentration-dependent fluorescence intensity. The two AIEgens were pH-responsive and had strong AIE-related emission in acidic solution. Importantly, AIEgens can enter the living cells by ATP dependent endocytosis, then light them up. The interactions between the AIEgens and living human hepatocarcinoma (HepG2) cells revealed that the internalization process of TPE-PLV and TPE-PDV was both chiral-dependent and pH-responsive. This novel strategy for synthesizing poly(amino acid)s functionalized AIEgens could inspire the development of promising fluorescent materials with chirality.

9.
Macromol Rapid Commun ; 42(6): e2000563, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33543565

RESUMO

As the core of polymer chemistry, manufacture of functional polymers is one of research hotspots over the past several decades. Various polymers are developed for diverse applications due to their tunable structures and unique properties. However, traditional step-by-step preparation strategies inevitably involve some problems, such as separation, purification, and time-consuming. The multicomponent reactions (MCRs) are emerging as environmentally benign synthetic strategies to construct multifunctional polymers or composites with pendant groups and designed structures because of their features, such as efficient, fast, green, and atom economy. This mini review summarizes the latest advances about fabrication of multifunctional fluorescent polymers or adsorptive polymeric composites through different MCRs, including Kabachnik-Fields reaction, Biginelli reaction, mercaptoacetic acid locking imine reaction, Debus-Radziszewski reaction, and Mannich reaction. The potential applications of these polymeric composites in biomedical and environmental remediation are also highlighted. It is expected that this mini-review will promote the development preparation and applications of functional polymers through MCRs.


Assuntos
Poluentes Ambientais , Nanopartículas , Iminas , Polímeros
10.
ACS Appl Mater Interfaces ; 13(7): 7987-7996, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560829

RESUMO

The development of multifunctional photosensitizers (PSs) with aggregation-induced emission (AIE) properties plays a critical role in promoting the progress of the photodynamic therapy (PDT). In this work, a multifunctional PS (named DSABBT NPs) with AIE activity has been designed and prepared to carry out ultrafast staining, excellent two-photon bioimaging, and high-efficiency image-guided PDT. Simply, DSABBT with AIE characteristic was synthesized by one-step Schiff reaction of 4-(diethylamino)-salicylaldehyde (DSA) and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BBT). Then, DSABBT and DSPE-PEG2000-cRGD generate nanoparticles (NPs) easily in an ultrapure water/tetrahydrofuran mixture through a facile nanoprecipitation at room temperature. We found that DSABBT NPs exhibit bright solid-state fluorescence with large stokes shifts (180 nm) and two-photon absorption cross-section (1700 GM). Importantly, DSABBT NPs exhibited excellent ability of ultrafast staining and two-photon imaging, which can readily label suborganelles by subtly shaking the living cells for 5 s under mild conditions. Moreover, DSABBT NPs displayed high singlet oxygen (1O2) generation capacity and remarkable image-guided PDT efficiency. Therefore, DSABBT NPs can act as the promising candidate for multifunctional PSs, which can destroy cancer cells and block malignant tumor growth via the production of reactive oxygen species upon irradiation conditions. These outcomes provide us with a selectable strategy for developing multifunctional theranostic systems.


Assuntos
Antineoplásicos/farmacologia , Corantes Fluorescentes/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Microscopia de Fluorescência por Excitação Multifotônica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/química , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/química , Propriedades de Superfície
11.
Theranostics ; 11(1): 330-345, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33391478

RESUMO

Background: Local protein synthesis and mRNA metabolism mediated by mRNP granules in the dendrites and the postsynaptic compartment is essential for synaptic remodeling and plasticity in neuronal cells. Dysregulation of these processes caused by TDP-43 proteinopathy leads to neurodegenerative diseases, such as frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Methods: Using biochemical analysis and imaging techniques, including super-resolution microscopy, we provide evidence, for the first time, for the postsynaptic localization of TDP-43 in mammalian synapses and we show that TDP-43 is a component of neuronal mRNP granules. Results: With activity stimulation and various molecular approaches, we further demonstrate activity-dependent mRNP granule dynamics involving disassembly of mRNP granules, release of mRNAs, activation of local protein translation, and the impairment of granule disassembly in cellular, animal and human models of TDP-43 proteinopathy. Conclusion: Our study elucidates the interplay between TDP-43 and neuronal mRNP granules in normal physiology and TDP-43 proteinopathy in the regulation of local protein translation and mRNA metabolism in the postsynaptic compartment.

12.
IEEE Trans Image Process ; 30: 1369-1381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33332268

RESUMO

Eye localization is undoubtedly crucial to acquiring large amounts of information. It not only helps people improve their understanding of others but is also a technology that enables machines to better understand humans. Although studies have reported satisfactory accuracy for frontal faces or head poses at limited angles, large head rotations generate numerous defects (e.g., disappearance of the eye), and existing methods are not effective enough to accurately localize eye centers. Therefore, this study makes three contributions to address these limitations. First, we propose a novel complete representation (CR) pipeline that can flexibly learn and generate two complete representations, namely the CR-center and CR-region, of the same identity. We also propose two novel eye center localization methods. This first method employs geometric transformation to estimate the rotational difference between two faces and an unknown-localization strategy for accurate transformation of the CR-center. The second method is based on image translation learning and uses the CR-region to train the generative adversarial network, which can then accurately generate and localize eye centers. Five image databases are employed to verify the proposed methods, and tests reveal that compared with existing methods, the proposed method can more accurately and robustly localize eye centers in challenging images, such as those showing considerable head rotation (both yaw rotation of -67.5° to +67.5° and roll rotation of +120° to -120°), complete occlusion of both eyes, poor illumination in addition to head rotation, head pose changes in the dark, and various gaze interaction.

13.
Mater Sci Eng C Mater Biol Appl ; 118: 111437, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255030

RESUMO

Multicomponent reactions (MCRs) have attracted broad interest for preparation of functional nanomaterials especially for the synthesis of functional polymers. Herein, we utilized an "old" MCR, the four-component Ugi reaction, to synthesize disulfide bond containing poly(PEG-TPE-DTDPA) amphiphilic copolymers with aggregation-induced emission (AIE) feature. This four-component Ugi reaction was carried out under rather mild reaction conditions, such as room temperature, no gas protection and absent of catalysts. The amphiphilic poly(PEG-TPE-DTDPA) copolymers with high number-average molecular weight (up to 86,440 Da) can self-assemble into claviform fluorescent polymeric nanoparticles (FPNs) in aqueous solution, and these water-dispersed nanoparticles exhibited strong emission, large Stokes shift (142 nm), low toxicity and remarkable ability in cellular imaging. Moreover, owing to the introduction of 3,3'-dithiodipropionic acid with disulfide bond, the resultant AIE-active poly(PEG-TPE-DTDPA) could display reduction-responsiveness and be utilized for synthesis of photothermal agents in-situ. Therefore, the AIE-active poly(PEG-TPE-DTDPA) could be promising for controlled intracellular delivery of biological activity molecules and fabrication of multifunctional AIE-active materials. Therefore, these novel AIE-active polymeric nanoparticles could be of great potential for various biomedical applications, such as biological imaging, stimuli-responsive drug delivery and theranostic applications.


Assuntos
Nanopartículas , Polímeros , Catálise , Dissulfetos , Corantes Fluorescentes
14.
IEEE Trans Image Process ; 30: 934-947, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33242306

RESUMO

Current deep learning methods seldom consider the effects of small pedestrian ratios and considerable differences in the aspect ratio of input images, which results in low pedestrian detection performance. This study proposes the ratio-and-scale-aware YOLO (RSA-YOLO) method to solve the aforementioned problems. The following procedure is adopted in this method. First, ratio-aware mechanisms are introduced to dynamically adjust the input layer length and width hyperparameters of YOLOv3, thereby solving the problem of considerable differences in the aspect ratio. Second, intelligent splits are used to automatically and appropriately divide the original images into two local images. Ratio-aware YOLO (RA-YOLO) is iteratively performed on the two local images. Because the original and local images produce low- and high-resolution pedestrian detection information after RA-YOLO, respectively, this study proposes new scale-aware mechanisms in which multiresolution fusion is used to solve the problem of misdetection of remarkably small pedestrians in images. The experimental results indicate that the proposed method produces favorable results for images with extremely small objects and those with considerable differences in the aspect ratio. Compared with the original YOLOs (i.e., YOLOv2 and YOLOv3) and several state-of-the-art approaches, the proposed method demonstrated a superior performance for the VOC 2012 comp4, INRIA, and ETH databases in terms of the average precision, intersection over union, and lowest log-average miss rate.

15.
Nat Commun ; 11(1): 6214, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277480

RESUMO

Radioprotectors for acute injuries caused by large doses of ionizing radiation are vital to national security, public health and future development of humankind. Here, we develop a strategy to explore safe and efficient radioprotectors by combining Hantzsch's reaction, high-throughput methods and polymer chemistry. A water-soluble polymer with low-cytotoxicity and an excellent anti-radiation capability has been achieved. In in vivo experiments, this polymer is even better than amifostine, which is the only approved radioprotector for clinical applications, in effectively protecting zebrafish embryos from fatally large doses of ionizing radiation (80 Gy X-ray). A mechanistic study also reveals that the radioprotective ability of this polymer originates from its ability to efficiently prevent DNA damage due to high doses of radiation. This is an initial attempt to explore polymer radioprotectors via a multi-component reaction. It allows exploiting functional polymers and provides the underlying insights to guide the design of radioprotective polymers.

16.
ACS Appl Mater Interfaces ; 12(50): 55659-55674, 2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33327053

RESUMO

Diabetic skin ulcer is one of the severe complications of diabetes mellitus, which has a high incidence and may cause death or disability. Platelet-rich plasma (PRP) is widely used in the treatment of diabetic wounds due to the effect of growth factors (GFs) derived from it. However, the relatively short half-life of GFs limits their applications in clinics. In addition, the presence of a large amount of proteases in the diabetic wound microenvironment results in the degradation of GFs, which further impedes angiogenesis and diabetic wound healing. In our study, we fabricated a self-healing and injectable hydrogel with a composite of chitosan, silk fibroin, and PRP (CBPGCTS-SF@PRP) for promoting diabetic wound healing. CBPGCTS-SF@PRP could protect PRP from enzymatic hydrolysis, release PRP sustainably, and enhance the chemotaxis of mesenchymal stem cells. The results showed that it could promote the proliferation of repair cells in vitro. Moreover, it could enhance wound healing by expediting collagen deposition, angiogenesis, and nerve repair in a type 2 diabetic rat model and a rat skin defect model. We hope that this study will offer a new treatment for diabetic nonhealing wounds in clinics.


Assuntos
Materiais Biocompatíveis/farmacologia , Hidrogéis/química , Plasma Rico em Plaquetas/metabolismo , Cicatrização/efeitos dos fármacos , Animais , Benzaldeídos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Diabetes Mellitus Tipo 2/induzido quimicamente , Diabetes Mellitus Tipo 2/patologia , Fibroínas/química , Humanos , Hidrogéis/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Nus , Neovascularização Fisiológica/efeitos dos fármacos , Fibras Nervosas/fisiologia , Plasma Rico em Plaquetas/química , Polietilenoglicóis/química , Ratos , Regeneração/efeitos dos fármacos , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia
17.
ACS Appl Mater Interfaces ; 12(49): 55056-55063, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33232105

RESUMO

Wearable conducting polymer-based NH3 sensors are highly desirable in real-time environmental monitoring and human health protection but still a challenge for their relatively long response/recovery time and moderate sensitivity at room temperature. Herein, we present an effective route to fulfill this challenge by constructing porous and neural network-like Au/polypyrrole (Au/PPy) electrospun nanofibrous film with hollow capsular units for NH3 sensor. Taking the unique architecture and synergistic effect between Au and PPy, our sensor exhibits not only super-rapid response/recovery time (both ∼7 s), faster than all reported sensors, but also stable and ultrahigh sensitivity (response reaches ∼2.3 for 1 ppm NH3) at room temperature even during repeated deformation. Furthermore, good selectivity has been also achieved. These outstanding properties make our sensor hold great potential in real-time NH3-related disease diagnosis and environmental monitoring at room temperature.

18.
Medicine (Baltimore) ; 99(47): e23083, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33217809

RESUMO

In the present study, we retrospectively analyzed the records of surgical confirmed kidney cancer with renal cell carcinoma pathology in the database of the hospital. We evaluated the significance of cancer size by assessing the outcomes of proposed adaptive active contour model (ACM). The aim of our study was to develop an adaptive ACM method to measure the radiological size of kidney cancer on computed tomography in the hospital patients. This paper proposed a set of medical image processing, applying images provided by the hospital and select the more obvious cases by the doctors, after the first treatment to remove noise image, and the kidney cancer contour would be circled by using the proposed adaptive ACM method. The results showed that the experimental outcome has highly similarity with the medical professional manual contour. The accuracy rate is higher than 99%. We have developed a novel adaptive ACM approach that well combines a knowledge-based system to contour the kidney cancer size in computed tomography imaging to support the clinical decision.

19.
Sensors (Basel) ; 20(22)2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33207617

RESUMO

Survey-grade Lidar brands have commercialized Lidar-based mobile mapping systems (MMSs) for several years now. With this high-end equipment, the high-level accuracy quality of point clouds can be ensured, but unfortunately, their high cost has prevented practical implementation in autonomous driving from being affordable. As an attempt to solve this problem, we present a cost-effective MMS to generate an accurate 3D color point cloud for autonomous vehicles. Among the major processes for color point cloud reconstruction, we first synchronize the timestamps of each sensor. The calibration process between camera and Lidar is developed to obtain the translation and rotation matrices, based on which color attributes can be composed into the corresponding Lidar points. We also employ control points to adjust the point cloud for fine tuning the absolute position. To overcome the limitation of Global Navigation Satellite System/Inertial Measurement Unit (GNSS/IMU) positioning system, we utilize Normal Distribution Transform (NDT) localization to refine the trajectory to solve the multi-scan dispersion issue. Experimental results show that the color point cloud reconstructed by the proposed MMS has a position error in centimeter-level accuracy, meeting the requirement of high definition (HD) maps for autonomous driving usage.

20.
Macromol Rapid Commun ; : e2000459, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33006198

RESUMO

The Hantzcsh reaction is a robust four-component reaction for the efficient generation of 1,4-dihydropyridine (1,4-DHP) derivatives. Recently, this reaction has been introduced into polymer chemistry in order to develop polymers having 1,4-DHP structures in the main and/or side chains. The 1,4-DHP groups confer new properties/functions to the polymers. This mini-review summarizes the recent studies on the development of new functional polymers by using the Hantzsch reaction. Several synthetic approaches, including polycondensation, post-polymerization modification (PPM), monomer to polymer strategy, and one-pot strategy are introduced; different applications (protein conjugation, formaldehyde detection, drug carrier, and anti-bacterial adhesion) of the resulting polymers are emphasized. Meanwhile, the future development of the Hantzsch reaction in exploring new functional polymers is also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...