Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 6476, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34753933

RESUMO

Polarized light can provide significant information about objects, and can be used as information carrier in communication systems through artificial modulation. However, traditional polarized light detection systems integrate polarizers and various functional circuits in addition to detectors, and are supplemented by complex encoding and decoding algorithms. Although the in-plane anisotropy of low-dimensional materials can be utilized to manufacture polarization-sensitive photodetectors without polarizers, the low anisotropic photocurrent ratio makes it impossible to realize digital output of polarized information. In this study, we propose an integrated polarization-sensitive amplification system by introducing a nanowire polarized photodetector and organic semiconductor transistors, which can boost the polarization sensitivity from 1.24 to 375. Especially, integrated systems are universal in that the systems can increase the anisotropic photocurrent ratio of any low-dimensional material corresponding to the polarized light. Consequently, a simple digital polarized light communication system can be realized based on this integrated system, which achieves certain information disguising and confidentiality effects.

2.
Phys Chem Chem Phys ; 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34842874

RESUMO

Among the IV-VI compounds, GeSe has wide applications in nanoelectronics due to its unique photoelectric properties and adjustable band gap. Even though modulation of its physical characteristics, including the band gap, by an external field will be useful for designing novel devices, experimental work is still rare. Here, we report a detailed anisotropic Raman response of GeSe flakes under uniaxial tension strain. Based on theoretical analysis, the anisotropy of the phonon response is attributed to a change in anisotropic bond length and bond angle under in-plane uniaxial strain. An enhancement in anisotropy and band gap is found due to strain along the ZZ or AC directions. This study shows that strain-engineering is an effective method for controlling the GeSe lattice, and paves the way for modulating the anisotropic electric and optical properties of GeSe.

3.
Adv Mater ; : e2105665, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34622516

RESUMO

The ability to detect light in photodetectors is central to practical optoelectronic applications, which has been demonstrated in inorganic semiconductor devices. However, so far, the study of polarization-sensitive organic photodetectors, which have unique applications in flexible and wearable electronics, has not received much attention. Herein, the construction of polarization-sensitive photodetectors based on the single crystals of a superior optoelectronic organic semiconductor, 2,6-diphenyl anthracene (DPA), is demonstrated. The systematic characterization of two-dimensionally grown DPA crystals with various techniques definitely show their strong anisotropy in molecular vibration, optical reflectance and optical absorption. In terms of polarization sensitivity, DPA-crystal based photodetectors exhibit a linear dichroic ratio up to ≈1.9. Theoretical calculations confirm that intrinsic linear dichroism, originated from the anisotropic in-plane crystal structure, is responsible for the polarization sensitivity of DPA crystals. This work opens up a new door for exploiting organic semiconductors for developing highly compact polarization photodetectors and providing new functionalities in novel flexible optical and optoelectronic applications.

4.
Adv Mater ; : e2107206, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34676919

RESUMO

2D materials have been attracting high interest in recent years due to their low structural symmetry, excellent photoresponse, and high air stability. However, most 2D materials can only respond to specific light, which limits the development of wide-spectrum photodetectors. Proper bandgap and the regulation of Fermi level are the foundations for realizing electronic multichannel transition, which is an effective method to achieve a wide spectral response. Herein, a noble 2D material, palladium phosphide sulfide (PdPS), is designed and synthesized. The bandgap of PdPS is around 2.1 eV and the formation of S vacancies, interstitial Pd and P atoms promote the Fermi level very close to the conduction band. Therefore, the PdPS-based photodetector shows impressive wide spectral response from solar-blind ultraviolet to near-infrared based on the multichannel transition. It also exhibits superior optoelectrical properties with photoresponsivity (R) of 1 × 103 A W-1 and detectivity (D*) of 4 × 1011 Jones at 532 nm. Moreover, PdPS exhibits good performance of polarization detection with dichroic ratio of ≈3.7 at 808 nm. Significantly, it achieves polarimetric imaging and hidden-target detection in complex environments through active detection.

5.
Nanoscale ; 13(31): 13174-13194, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34477725

RESUMO

2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.

6.
J Phys Chem Lett ; 12(32): 7832-7839, 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34379422

RESUMO

Thermoelectric materials which enable heat-to-electricity conversion are fundamentally important for heat management in semiconductor devices. Achieving high thermoelectric performance requires blocking the thermal transport and maintaining the high electronic transport, but it is a challenge to satisfy both criteria simultaneously. We propose that tuning the interlayer distance can effectively modulate the electrical and thermal conductivities. We find group IV-VI and V semiconductors with a moderate interlayer distance can exhibit high thermoelectric performance. Taking SnSe as an example, we reveal that in the out-of-plane direction the delocalized pz orbitals combined with the relatively small interlayer distance lead to overlapping of the antibonding state wave functions, which is beneficial for high electronic transport. However, because of the breakdown of the chemical bond, the out-of-plane thermal conductivity is small. This study provides a strategy to enhance electrical conductivity without increasing thermal conductivity and thus sheds light on the design of thermoelectric devices.

7.
ACS Appl Mater Interfaces ; 13(27): 32579-32589, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34196522

RESUMO

A perpendicularly magnetized spin injector with a high Curie temperature is a prerequisite for developing spin optoelectronic devices on two-dimensional (2D) materials working at room temperature (RT) with zero applied magnetic field. Here, we report the growth of Ta/CoFeB/MgO structures with large perpendicular magnetic anisotropy (PMA) on full-coverage monolayer (ML) molybdenum disulfide (MoS2). A large perpendicular interface anisotropy energy of 0.975 mJ/m2 has been obtained at the CoFeB/MgO interface, comparable to that observed in magnetic tunnel junction systems. It is found that the insertion of MgO between the ferromagnetic (FM) metal and the 2D material can effectively prevent the diffusion of the FM atoms into the 2D material. Moreover, the MoS2 ML favors a MgO(001) texture and plays a critical role in establishing the large PMA. First-principles calculations on a similar Fe/MgO/MoS2 structure reveal that the MgO thickness can modify the MoS2 band structure, from a direct band gap with 3ML-MgO to an indirect band gap with 7 ML-MgO. The proximity effect induced by Fe results in splitting of 10 meV in the valence band at the Γ point for the 3ML-MgO structure, while it is negligible for the 7 ML-MgO structure. These results pave the way to develop RT spin optoelectronic devices based on 2D transition-metal dichalcogenide materials.

8.
Nat Commun ; 12(1): 4030, 2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188060

RESUMO

Van der Waals integration with abundant two-dimensional materials provides a broad basis for assembling functional devices. In a specific van der Waals heterojunction, the band alignment engineering is crucial and feasible to realize high performance and multifunctionality. Here, we design a ferroelectric-tuned van der Waals heterojunction device structure by integrating a GeSe/MoS2 VHJ and poly (vinylidene fluoride-trifluoroethylene)-based ferroelectric polymer. An ultrahigh electric field derived from the ferroelectric polarization can effectively modulate the band alignment of the GeSe/MoS2 heterojunction. Band alignment transition of the heterojunction from type II to type I is demonstrated. The combination of anisotropic GeSe with MoS2 realizes a high-performance polarization-sensitive photodetector exhibiting low dark current of approximately 1.5 pA, quick response of 14 µs, and high detectivity of 4.7 × 1012 Jones. Dichroism ratios are also enhanced by ferroelectric polarization in a broad spectrum from visible to near-infrared. The ferroelectric-tuned GeSe/MoS2 van der Waals heterojunction has great potential for multifunctional detection applications in sophisticated light information sensing. More profoundly, the ferroelectric-tuned van der Waals heterojunction structure provides a valid band-engineering approach to creating versatile devices.

9.
Nanoscale ; 13(23): 10579-10586, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34100510

RESUMO

As a new two-dimensional elemental layered semiconductor, black phosphorus (b-P) has received tremendous attention due to its excellent physical and chemical properties and has potential applications in the fields of catalysis, energy, and micro/nano-optoelectronic devices. However, studies have found that b-P is very unstable and will decompose within a few minutes under humid air conditions. Element doping is an effective method for adjusting the physical and chemical properties of crystals. Theoretical and experimental studies have confirmed that the stability of b-P crystals is significantly improved after arsenic doping, and the crystals also exhibit excellent photoresponse and electrical transport performances. In this work, we investigate the physical properties of a component of black arsenic phosphorus crystals (b-As0.084P0.916) and the potential applications in field effect transistors (FETs) and broadband photodetectors. An obvious ambipolar behavior is observed in the transfer characteristics of b-As0.084P0.916 based FETs, with drain current modulation on the order of 105 and the highest charge-carrier mobility of up to 147 cm2 V-1 s-1. The physisorption of atmospheric species on the surface of the FETs is the main factor for the formation of Schottky contacts between the Au electrodes and the b-As0.084P0.916 crystal. Temperature-dependent electrical characteristics show that the Fermi level shifts from the valence band to the middle level between the conduction band and valence band as the temperature decreases. In addition, the FETs also exhibit excellent photoresponse properties from the visible to near-infrared region (450-2200 nm), with a responsivity of 37 A W-1, a specific detectivity of 7.18 × 1010 Jones, and a fast response speed (τrise ≈ 0.04 s and τdecay ≈ 0.14 s). These results suggest that b-As0.084P0.916 crystals are a promising candidate for future electronic and optoelectronic devices.

10.
Adv Sci (Weinh) ; 8(14): e2100075, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34021718

RESUMO

With the increasing demand for detection accuracy and sensitivity, dual-band polarimetric image sensor has attracted considerable attention due to better object recognition by processing signals from diverse wavebands. However, the widespread use of polarimetric sensors is still limited by high noise, narrow photoresponse range, and low linearly dichroic ratio. Recently, the low-dimensional materials with intrinsic in-plane anisotropy structure exhibit the great potential to realize direct polarized photodetection. Here, strong anisotropy of 1D layered bismuth sulfide (Bi2 S3 ) is demonstrated experimentally and theoretically. The Bi2 S3 photodetector exhibits excellent device performance, which enables high photoresponsivity (32 A W-1 ), Ion /Ioff ratio (1.08 × 104 ), robust linearly dichroic ratio (1.9), and Hooge parameter (2.0 × 10-5 at 1 Hz) which refer to lower noise than most reported low-dimensional materials-based devices. Impressively, such Bi2 S3 nanowire exhibits a good broadband photoresponse, ranging from ultraviolet (360 nm) to short-wave infrared (1064 nm). Direct polarimetric imaging is implemented at the wavelengths of 532 and 808 nm. With these remarkable features, the 1D Bi2 S3 nanowires show great potential for direct dual-band polarimetric image sensors without using any external optical polarizer.

11.
Small ; 17(21): e2100457, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33890405

RESUMO

Birefringence and dichroism are very important properties in optical anisotropy. Understanding the intrinsic birefringence and dichroism of a material can provide great help to utilize its optical anisotropy. But the direct experimental investigation of birefringence in nanoscale materials is rarely reported. As typical anisotropic transition metals trichalcogenides (TMTCs) materials with quasi-1D structure, TiS3 and ZrS3 have attracted extensive attention due to their special crystal structure and optical anisotropy characteristics. Here, the optical anisotropy properties such as birefringence and dichroism of two kinds of quasi-1D TMTCs, TiS3 and ZrS3 , are theoretically and experimentally studied. In experimental results, the anisotropic refraction and anisotropic reflection of TiS3 and ZrS3 are studied by polarization-resolved optical microscopy and azimuth-dependent reflectance difference microscopy, respectively. In addition, the birefringence and dichroism of ZrS3 nanoribbon in experiment are directly measured by spectrometric ellipsometry measurements, and a reasonable result is obtained. This work provides the basic optical anisotropy information of TiS3 and ZrS3 . It lays a foundation for the further study of the optical anisotropy of these two materials and provides a feasible method for the study of birefringence and dichroism of other nanomaterials in the future.

12.
Adv Mater ; 33(22): e2008761, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33876467

RESUMO

Exploring 2D ultrawide bandgap semiconductors (UWBSs) will be conductive to the development of next-generation nanodevices, such as deep-ultraviolet photodetectors, single-photon emitters, and high-power flexible electronic devices. However, a gap still remains between the theoretical prediction of novel 2D UWBSs and the experimental realization of the corresponding materials. The cross-substitution process is an effective way to construct novel semiconductors with the favorable parent characteristics (e.g., structure) and the better physicochemical properties (e.g., bandgap). Herein, a simple case is offered for rational design and syntheses of 2D UWBS GaPS4 by employing state-of-the-art GeS2 as a similar structural model. Benefiting from the cosubstitution of Ge with lighter Ga and P, the GaPS4 crystals exhibit sharply enlarged optical bandgaps (few-layer: 3.94 eV and monolayer: 4.50 eV) and superior detection performances with high responsivity (4.89 A W-1 ), high detectivity (1.98 × 1012 Jones), and high quantum efficiency (2.39 × 103 %) in the solar-blind ultraviolet region. Moreover, the GaPS4 -based photodetector exhibits polarization-sensitive photoresponse with a linear dichroic ratio of 1.85 at 254 nm, benefitting from its in-plane structural anisotropy. These results provide a pathway for the discovery and fabrication of 2D UWBS anisotropic materials, which become promising candidates for future solar-blind ultraviolet and polarization-sensitive sensors.

13.
Nat Mater ; 20(6): 818-825, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33649563

RESUMO

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

14.
Adv Sci (Weinh) ; 8(4): 1903252, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643781

RESUMO

2D van der Waals heterostructures (vdWHs) offer tremendous opportunities in designing multifunctional electronic devices. Due to the ultrathin nature of 2D materials, the gate-induced change in charge density makes amplitude control possible, creating a new programmable unilateral rectifier. The study of 2D vdWHs-based reversible unilateral rectifier is lacking, although it can give rise to a new degree of freedom for modulating the output state. Here, a InSe/GeSe vdWH-FET is constructed as a gate-controllable half wave rectifier. The device exhibits stepless adjustment from forward to backward rectifying performance, leading to multiple operation states of output level. Near-broken band alignment in the InSe/GeSe vdWH-FET is a crucial feature for high-performance reversible rectifier, which is shown to have backward and forward rectification ratio of 1:38 and 963:1, respectively. Being further explored as a new bridge rectifier, the InSe/GeSe device has great potential in future gate-controllable alternating current/direct current convertor. These results indicate that 2D vdWHs with near-broken band alignment can offer a pathway to simplify the commutating circuit and regulating speed circuit.

15.
Adv Mater ; 33(8): e2006908, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448082

RESUMO

The interfacial tunable band alignment of heterostructures is coveted in device design and optimization of device performance. As an intentional approach, alloying allows band engineering and continuous band-edge tunability for low-dimensional semiconductors. Thus, combining the tunability of alloying with the band structure of a heterostructure is highly desirable for the improvement of device characteristics. In this work, the single-step growth of alloy-to-alloy (MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y ) 2D vertical heterostructures is demonstrated. Electron diffraction reveals the well-aligned heteroepitaxial relationship for the heterostructure, and a near-atomically sharp and defect-free boundary along the interface is observed. The nearly intrinsic van der Waals (vdW) interface enables measurement of the intrinsic behaviors of the heterostructures. The optimized type-II band alignment for the MoS2(1- x ) Se2 x /SnS2(1- y ) Se2 y heterostructure, along with the large band offset and effective charge transfer, is confirmed through quenched PL spectroscopy combined with density functional theory calculations. Devices based on completely stacked heterostructures show one or two orders enhanced electron mobility and rectification ratio than those of the constituent materials. The realization of device-quality alloy-to-alloy heterostructures provides a new material platform for precisely tuning band alignment and optimizing device applications.

16.
Nat Commun ; 12(1): 21, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397923

RESUMO

The temperature dependence of charge transport dramatically affects and even determines the properties and applications of organic semiconductors, but is challenging to effectively modulate. Here, we develop a strategy to circumvent this challenge through precisely tuning the effective height of the potential barrier of the grain boundary (i.e., potential barrier engineering). This strategy shows that the charge transport exhibits strong temperature dependence when effective potential barrier height reaches maximum at a grain size near to twice the Debye length, and that larger or smaller grain sizes both reduce effective potential barrier height, rendering devices relatively thermostable. Significantly, through this strategy a traditional thermo-stable organic semiconductor (dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, DNTT) achieves a high thermo-sensitivity (relative current change) of 155, which is far larger than what is expected from a standard thermally-activated carrier transport. As demonstrations, we show that thermo-sensitive OFETs perform as highly sensitive temperature sensors.

17.
ACS Nano ; 15(1): 1701-1709, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33331154

RESUMO

Low-symmetry two-dimensional (2D) semiconductors have attracted great attention because of their rich in-plane anisotropic optical, electrical, and thermoelectric properties and potential applications in multifunctional nanoelectronic and optoelectronic devices. However, anisotropic 2D semiconductors with high performance are still very limited. Here, we report the systematic study of in-plane anisotropic properties in few-layered b-As that is a narrow-gap semiconductor, based on the experimental and theoretical investigations. According to experimental results, we have come up with a simple method for identifying the orientation of b-As crystals. Meanwhile, we show that the maximum mobility of electrons and holes was measured in the in-plane armchair (AC) direction. The measured maximum electron mobility ratio is about 2.68, and the hole mobility ratio is about 1.79.

18.
Small ; 17(4): e2006765, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33345467

RESUMO

2D layered photodetectors have been widely researched for intriguing optoelectronic properties but their application fields are limited by the bandgap. Extending the detection waveband can significantly enrich functionalities and applications of photodetectors. For example, after breaking through bandgap limitation, extrinsic Si photodetectors are used for short-wavelength infrared or even long-wavelength infrared detection. Utilizing extrinsic photoconduction to extend the detection waveband of 2D layered photodetectors is attractive and desirable. However, extrinsic photoconduction has yet not been observed in 2D layered materials. Here, extrinsic photoconduction-induced short-wavelength infrared photodetectors based on Ge-based chalcogenides are reported for the first time and the effectiveness of intrinsic point defects are demonstrated. The detection waveband of room-temperature extrinsic GeSe photodetectors with the assistance of Ge vacancies is broadened to 1.6 µm. Extrinsic GeSe photodetectors have an excellent external quantum efficiency (0.5%) at the communication band of 1.31 µm and polarization-resolved capability to subwaveband radiation. Moreover, room-temperature extrinsic GeS photodetectors with a detection waveband to the communication band of 1.55 µm further verify the versatility of intrinsic point defects. This approach provides design strategies to enrich the functionalities of 2D layered photodetectors.

19.
ACS Appl Mater Interfaces ; 12(39): 43921-43926, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32878440

RESUMO

The van der Waals (vdW) materials offer an opportunity to build all-two-dimensional (all-2D) spintronic devices with high-quality interfaces regardless of the lattice mismatch. Here, we report on an all-2D vertical spin valve that combines a typical layered semiconductor MoS2 with vdW ferromagnetic metal Fe3GeTe2 (FGT) flakes. The linear current-voltage curves illustrate that Ohmic contacts are formed in FGT/MoS2 interfaces, while the temperature dependence of the junction resistance further demonstrates that the MoS2 interlayer acts as a conducting layer instead of a tunneling layer. In addition, the magnitude of the magnetoresistance (MR) of 3.1% at 10 K is observed, which is around 8 times larger than that of the reported spin valves based on MoS2 sandwiched by conventional ferromagnetic electrodes. The MR decreasing monotonically with increasing temperature follows the Bloch's law. As the bias current decreases exponentially, the MR increases linearly up to a maximum value of 4.1%. Our results reveal the potential opportunities of vdW heterostructures for developing novel spintronic devices.

20.
Nanotechnology ; 31(16): 164001, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31891933

RESUMO

The ultimate goal of molecular electronics is to achieve practical applications. For approaching the target, we have successfully fabricated solid-state junctions based on oligo(phenylene ethynylene)s (OPEs) and cruciform OPEs with extended tetrathiafulvalene (TTF) (OPE3 and OPE3-TTF) self-assembled monolayers (SAMs) with a diamine anchoring group. SAMs were confined in micropores with gold substrates to ensure well-defined device surface areas. The transport properties were conducted on a double-junction layout, which the rGO films used for top contacts and interconnects between adjacent SAMs. The solid-state devices based on OPE3-TTF SAMs showed the expected higher conductance under ambient conditions because of the incorporation of a TTF moiety. The two devices displayed varying degrees of temperature dependence with decreasing temperature, which resulted from the cross-conjugated OPE3-TTF molecule exhibiting quantum interference while the linear-conjugated OPE3 molecule did not. This study shows the temperature dependence of the electrical properties of molecular devices based on cruciform OPEs, further enriching the research results of functional molecular devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...