Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 26(2): 454-463, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31603264

RESUMO

Lytic polysaccharide monooxygenases (LPMOs) are copper-containing enzymes capable of oxidizing crystalline cellulose which have large practical application in the process of refining biomass. The catalytic mechanism of LPMOs still remains debated despite several proposed reaction mechanisms. Here, we report a long-lived intermediate (t1/2 =6-8 minutes) observed in an LPMO from Thermoascus aurantiacus (TaLPMO9A). The intermediate with a strong absorption around 420 nm is formed when reduced LPMO-CuI reacts with sub-equimolar amounts of H2 O2 . UV/Vis absorption spectroscopy, electron paramagnetic resonance, resonance Raman and stopped-flow spectroscopy suggest that the observed long-lived intermediate involves the copper center and a nearby tyrosine (Tyr175). Additionally, activity assays in the presence of sub-equimolar amounts of H2 O2 showed an increase in the LPMO oxidation of phosphoric acid swollen cellulose. Accordingly, this suggests that the long-lived copper-dependent intermediate could be part of the catalytic mechanism for LPMOs. The observed intermediate offers a new perspective into the oxidative reaction mechanism of TaLPMO9A and hence for the biomass oxidation and the reactivity of copper in biological systems.


Assuntos
Cobre/química , Oxigenases de Função Mista/metabolismo , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Peróxido de Hidrogênio/química , Cinética , Oxigenases de Função Mista/química , Oxirredução , Thermoascus/enzimologia
2.
Inorg Chem ; 59(1): 235-243, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825607

RESUMO

In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.

3.
Nat Commun ; 9(1): 1292, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599433

RESUMO

Total control over the electronic spin relaxation in molecular nanomagnets is the ultimate goal in the design of new molecules with evermore realizable applications in spin-based devices. For single-ion lanthanide systems, with strong spin-orbit coupling, the potential applications are linked to the energetic structure of the crystal field levels and quantum tunneling within the ground state. Structural engineering of the timescale of these tunneling events via appropriate design of crystal fields represents a fundamental challenge for the synthetic chemist, since tunnel splittings are expected to be suppressed by crystal field environments with sufficiently high-order symmetry. Here, we report the long missing study of the effect of a non-linear (C4) to pseudo-linear (D4d) change in crystal field symmetry in an otherwise chemically unaltered dysprosium complex. From a purely experimental study of crystal field levels and electronic spin dynamics at milliKelvin temperatures, we demonstrate the ensuing threefold reduction of the tunnel splitting.

4.
Inorg Chem ; 57(7): 3500-3506, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29323893

RESUMO

The reaction of the simple metalloligand [FeIIIL3] [HL = 1-(4-pyridyl)butane-1,3-dione] with a variety of different MII salts results in the formation of a family of heterometallic cages of formulae [FeIII8PdII6L24]Cl12 (1), [FeIII8CuII6L24(H2O)4Br4]Br8 (2), [FeIII8CuII6L24(H2O)10](NO3)12 (3), [FeIII8NiII6L24(SCN)11Cl] (4), and [FeIII8CoII6L24(SCN)10(H2O)2]Cl2 (5). The metallic skeleton of each cage describes a cube in which the FeIII ions occupy the eight vertices and the MII ions lie at the center of the six faces. Direct-current magnetic susceptibility and magnetization measurements on 3-5 reveal the presence of weak antiferromagnetic exchange between the metal ions in all three cases. Computational techniques known in theoretical nuclear physics as statistical spectroscopy, which exploit the moments of the Hamiltonian to calculate relevant thermodynamic properties, determine JFe-Cu = 0.10 cm-1 for 3 and JFe-Ni = 0.025 cm-1 for 4. Q-band electron paramagnetic resonance spectra of 1 reveal a significantly wider spectral width in comparison to [FeL3], indicating that the magnitude of the FeIII zero-field splitting is larger in the heterometallic cage than in the monomer.

5.
Dalton Trans ; 46(18): 6024-6030, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-28426044

RESUMO

Using a new polydentate Schiff-base ligand (H3L) we isolated three new tetranuclear isostructural lanthanide complexes with the general formula [LnNa2(L)4(DMF)4(H2O)2(AcO)2]·4DMF·2H2O [Ln = Dy (1), Ho (2), or Er (3)]. The structural characterization of the complexes reveals that the Na+ ions are coordinated in the structure which gives them a structure-directing role in the molecule. The magnetic behavior of the systems was investigated by means of SQUID magnetometry which revealed that complex 1 exhibits single molecule magnet behavior at low temperatures which is enhanced by the application of a 2000 Oe static magnetic field. We were able to extract an effective barrier of Ueff = 43(1) K, however, we show that the consideration of an Orbach relaxation mechanism being the dominant is not always correct for lanthanides. On the contrary, we elaborate how in this system the relaxation is caused by a combination of a direct and a Raman process.

6.
Chem Sci ; 8(5): 3566-3575, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30155201

RESUMO

Exploitation of HSAB preferences allows for high-yield, one-pot syntheses of lanthanide complexes chelated by two Pd or Pt metalloligands, [MII(SAc)4]2- (SAc- = thioacetate, M = Pd, Pt). The resulting complexes with 8 oxygen donors surrounding the lanthanides can be isolated in crystallographically tetragonal environments as either [NEt4]+ (space group: P4/mcc) or [PPh4]+ (space group: P4/n) salts. In the case of M = Pt, the complete series of lanthanide complexes has been structurally characterized as the [NEt4]+ salts (except for Ln = Pm), while the [PPh4]+ salts have been structurally characterized for Ln = Gd-Er, Y. For M = Pd, selected lanthanide complexes have been structurally characterized as both salts. The only significant structural difference between salts of the two counter ions is the resulting twist angle connecting tetragonal prismatic and tetragonal anti-prismatic configurations, with the [PPh4]+ salts approaching ideal D4d symmetry very closely (φ = 44.52-44.61°) while the [NEt4]+ salts exhibit intermediate twist angles in the interval φ = 17.28-27.41°, the twist increasing as the complete 4f series is traversed. Static magnetic properties for the latter half of the lanthanide series are found to agree well in the high temperature limit with the expected Curie behavior. Perpendicular and parallel mode EPR spectroscopy on randomly oriented powder samples and single crystals of the Gd complexes with respectively Pd- and Pt-based metalloligands demonstrate the nature of the platinum metal to strongly affect the spectra. Consistent parametrization of all of the EPR spectra reveals the main difference to stem from a large difference in the magnitude of the leading axial term, B02, this being almost four times larger for the Pt-based complexes as compared to the Pd analogues, indicating a direct Pt(5d z2 )-Ln interaction and an arguable coordination number of 10 rather than 8. The parametrization of the EPR spectra also confirms that off-diagonal operators are associated with non-zero parameters for the [NEt4]+ salts, while only contributing minimally for the [PPh4]+ salts in which lanthanide coordination approximates D4d point group symmetry closely.

7.
Inorg Chem ; 55(20): 10377-10382, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27670363

RESUMO

A tetranuclear [2 × 2] grid-like manganese(III) Schiff base complex, Mn4, has been synthesized and characterized by single-crystal X-ray crystallography. Direct-current magnetization measurements were performed on the system and proved to be insufficient for an accurate magnetic model to be deduced. Combined inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) experiments provided the necessary information in order to successfully model the magnetic properties of Mn4. The resulting model takes into account both the magnitude and the relative orientations of the single-ion anisotropy tensors.

9.
Nat Commun ; 7: 12195, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27435800

RESUMO

New exotic phenomena have recently been discovered in oxides of paramagnetic Ir(4+) ions, widely known as 'iridates'. Their remarkable properties originate from concerted effects of the crystal field, magnetic interactions and strong spin-orbit coupling, characteristic of 5d metal ions. Despite numerous experimental reports, the electronic structure of these materials is still challenging to elucidate, and not attainable in the isolated, but chemically inaccessible, [IrO6](8-) species (the simplest molecular analogue of the elementary {IrO6}(8-) fragment present in all iridates). Here, we introduce an alternative approach to circumvent this problem by substituting the oxide ions in [IrO6](8-) by isoelectronic fluorides to form the fluorido-iridate: [IrF6](2-). This molecular species has the same electronic ground state as the {IrO6}(8-) fragment, and thus emerges as an ideal model for iridates. These results may open perspectives for using fluorido-iridates as building-blocks for electronic and magnetic quantum materials synthesized by soft chemistry routes.

10.
J Am Chem Soc ; 138(18): 5801-4, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27105449

RESUMO

Quantum coherence is detected in the 4f single-ion magnet (SIM) Yb(trensal), by isotope selective pulsed EPR spectroscopy on an oriented single crystal. At X-band, the spin-lattice relaxation (T1) and phase memory (Tm) times are found to be independent of the nuclei bearing, or not, a nuclear spin. The observation of Rabi oscillations of the spin echo demonstrates the possibility to coherently manipulate the system for more than 70 rotations. This renders Yb(trensal), a sublimable and chemically modifiable SIM, an excellent candidate for quantum information processing.

11.
Inorg Chem ; 55(4): 1453-60, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26824164

RESUMO

The use of a simple two-center model to describe exchange-coupled systems of various complexities is common in the field of coordination chemistry and molecular magnetism. In this work we investigate the applicability of this model experimentally, employing multifrequency, single-crystal EPR on axial dinuclear chromium(III) systems amenable to accurate parametrizations. The very high confidence with which zero-field splitting parameters can be determined by this technique, applied to the systems in question, allows for an in-depth analysis of the modeling. We experimentally demonstrate and qualitatively account for the energy-dependent modification of the spin-multiplet anisotropies, which is introduced by the exchange interaction. Even for the simple systems under consideration, we find that the standard modeling provides an inadequate parametrization of experimental data, and we present a convenient model extension, which improves the description.

12.
Inorg Chem ; 54(15): 7600-6, 2015 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-26201004

RESUMO

Determination of the electronic energy spectrum of a trigonal-symmetry mononuclear Yb(3+) single-molecule magnet (SMM) by high-resolution absorption and luminescence spectroscopies reveals that the first excited electronic doublet is placed nearly 500 cm(-1) above the ground one. Fitting of the paramagnetic relaxation times of this SMM to a thermally activated (Orbach) model {τ = τ0 × exp[ΔOrbach/(kBT)]} affords an activation barrier, ΔOrbach, of only 38 cm(-1). This result is incompatible with the spectroscopic observations. Thus, we unambiguously demonstrate, solely on the basis of experimental data, that Orbach relaxation cannot a priori be considered as the main mechanism determining the spin dynamics of SMMs. This study highlights the fact that the general synthetic approach of optimizing SMM behavior by maximization of the anisotropy barrier, intimately linked to the ligand field, as the sole parameter to be tuned, is insufficient because of the complete neglect of the interaction of the magnetic moment of the molecule with its environment. The Orbach mechanism is expected dominant only in the cases in which the energy of the excited ligand field state is below the Debye temperature, which is typically low for molecular crystals and, thus, prevents the use of the anisotropy barrier as a design criterion for the realization of high-temperature SMMs. Therefore, consideration of additional design criteria that address the presence of alternative relaxation processes beyond the traditional double-well picture is required.

13.
Chemistry ; 21(31): 11212-8, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26121216

RESUMO

The central Mn(II) ions in a series of calix[4]arene-stabilised butterflies can be sequentially replaced with Ln(III) ions, maintaining the structural integrity of the molecule but transforming its magnetic properties. The replacement of Mn(II) for Gd(III) allows for the examination of the transferability of spin-Hamiltonian parameters within the family as well as permitting their reliable determination. The introduction of the 4f ions results in weaker intramolecular magnetic exchange, an increase in the number of low-lying excited states, and an increase in magnetisation relaxation, highlighting the importance of exchange over single-ion anisotropy for the observation of SMM behaviour in this family of complexes. The presence of the [TM(II/III) (TBC[4])(OH)(solvent)] metalloligand (TM=transition metal, TBC=p-tBu-calix[4]arene) suggests that magnetic calix[n]arene building blocks can be employed to encapsulate a range of different "guests" within structurally robust "hosts".

14.
Angew Chem Int Ed Engl ; 54(23): 6761-4, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25891167

RESUMO

[Cr(III)8M(II)6](12+) (M(II) =Cu, Co) coordination cubes were constructed from a simple [Cr(III) L3 ] metalloligand and a "naked" M(II) salt. The flexibility in the design proffers the potential to tune the physical properties, as all the constituent parts of the cage can be changed without structural alteration. Computational techniques (known in theoretical nuclear physics as statistical spectroscopy) in tandem with EPR spectroscopy are used to interpret the magnetic behavior.

15.
Acta Crystallogr E Crystallogr Commun ; 71(Pt 12): m275-6, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26870462

RESUMO

The title compound, [Co2(L)2](3+)·3NO3 (-) [where L = CH3C(CH2NHCH2CH2OH1/2)3], has been synthesized from the ligand 1,1,1-tris-(2-hy-droxy-ethyl-amino-meth-yl)ethane. The cobalt(III) dimer has an inter-esting and uncommon O-H⋯O hydrogen-bonding motif with the three bridging hy-droxy H atoms each being equally disordered over two positions. In the dimeric trication, the octa-hedrally coordinated Co(III) atoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. N-H⋯O hydrogen bonding between the complex cations and nitrate anions leads to the formation of a three-dimensional network structure. The compound is a racemic conglomerate of crystals containing either d or l mol-ecules. The crystal used for this study is a d crystal.

16.
Inorg Chem ; 53(6): 2996-3003, 2014 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-24597528

RESUMO

The synthesis and X-ray structure of a new member of the series of oxo-bridged, dinuclear chromium(III) complexes, the methyl isocyanide complex [(CH3NC)5CrOCr(CNCH3)5](PF6)4·2CH3CN, is reported. This constitutes only the third oxo-bridged, dinuclear chromium(III) complex with a homoleptic auxillay ligand sphere. Experimentally, the system shows unshifted narrow nuclear magnetic resonance (NMR) spectra that are consistent with calculations using broken symmetry density functional theory (DFT), which suggests it to be the strongest coupled, dinuclear chromium(III) complex known. Furthermore, we report the crystal structure and computed magnetic properties for [(bpy)2(SCN)CrOCr(NCS)(bpy)2](ClO4)2·2H2O (bpy = 2,2'-bipyridine), which differs from other reported oxo-bridged species by featuring a bent CrOCr(4+) core. We also interpret the spectacular 10-orders-of-magnitude variation in acid dissociation constant of the bridging hydroxo ligand in mono hydroxo-bridged dinuclear chromium(III) complexes, in terms of a valence bond model parametrized by metal-to-metal charge transfer (MMCT) and ligand-to-metal charge transfer (LMCT) energies.

17.
Inorg Chem ; 53(10): 5013-9, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24601580

RESUMO

The nature of the magnetic interaction through fluoride in a simple, dinuclear manganese(III) complex (1), bridged by a single fluoride ion in a perfectly linear fashion, is established by experiment and density functional theory. The magnitude of the antiferromagnetic exchange interaction and the manganese(III) zero-field-splitting parameters are unambiguously determined by inelastic neutron scattering to yield J = 33.0(2) cm(-1) (H = JS1·S2 Hamiltonian definition) and single-ion D = -4.0(1) cm(-1). Additionally, high-field, high-frequency electron paramagnetic resonance and magnetic measurements support the parameter values and resolve |E| ≈ 0.04 cm(-1). The exchange coupling constant (J) is 1 order of magnitude smaller than that found in comparable systems with linear oxide bridging but comparable to typical magnitudes through cyanide, thus underlining the potential of fluoride complexes as promising building blocks for novel magnetic systems.

18.
Angew Chem Int Ed Engl ; 53(5): 1351-4, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24459056

RESUMO

A facile synthesis of the [ReF6 ](2-) ion and its use as a building block to synthesize magnetic systems are reported. Using dc and ac magnetic susceptibility measurements, INS and EPR spectroscopies, the magnetic properties of the isolated [ReF6 ](2-) unit in (PPh4 )2 [ReF6 ]⋅2 H2 O (1) have been fully studied including the slow relaxation of the magnetization observed below ca. 4 K. This slow dynamic is preserved for the one-dimensional coordination polymer [Zn(viz)4 (ReF6 )]∞ (2, viz=1-vinylimidazole), demonstrating the irrelevance of low symmetry for such magnetization dynamics in systems with easy-plane-type anisotropy. The ability of fluoride to mediate significant exchange interactions is exemplified by the isostructural [Ni(viz)4 (ReF6 )]∞ (3) analogue in which the ferromagnetic Ni(II) -Re(IV) interaction (+10.8 cm(-1) ) dwarfs the coupling present in related cyanide-bridged systems. These results reveal [ReF6 ](2-) to be an unique new module for the design of molecule-based magnetic materials.

19.
Chem Commun (Camb) ; 49(49): 5583-5, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23677003

RESUMO

The observed angular variation of the magnetic exchange coupling parameter in a series of fluoride-bridged chromium(III)-gadolinium(III) complexes is explained by DFT calculations.


Assuntos
Cromo/química , Fluoretos/química , Gadolínio/química , Compostos Organometálicos/química , Modelos Moleculares , Teoria Quântica
20.
Chemistry ; 19(11): 3693-701, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23386431

RESUMO

We have investigated the single-molecule magnets [Mn(III)2 (5-Brsalen)2 (MeOH)2 M(III) (CN)6 ]NEt4 (M=Os (1) and Ru (2); 5-Brsalen=N,N'-ethylenebis(5-bromosalicylidene)iminate) by frequency-domain Fourier-transform terahertz electron paramagnetic resonance (THz-EPR), inelastic neutron scattering, and superconducting quantum interference device (SQUID) magnetometry. The combination of all three techniques allows for the unambiguous experimental determination of the three-axis anisotropic magnetic exchange coupling between Mn(III) and Ru(III) or Os(III) ions, respectively. Analysis by means of a spin-Hamiltonian parameterization yields excellent agreement with all experimental data. Furthermore, analytical calculations show that the observed exchange anisotropy is due to the bent geometry encountered in both 1 and 2, whereas a linear geometry would lead to an Ising-type exchange coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA