Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(15): 152502, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25167256

RESUMO

The second J(π)=2+ state of 12C, predicted over 50 years ago as an excitation of the Hoyle state, has been unambiguously identified using the 12C(γ,α0)(8)Be reaction. The alpha particles produced by the photodisintegration of 12C were detected using an optical time projection chamber. Data were collected at beam energies between 9.1 and 10.7 MeV using the intense nearly monoenergetic gamma-ray beams at the HIγS facility. The measured angular distributions determine the cross section and the E1-E2 relative phases as a function of energy leading to an unambiguous identification of the second 2+ state in 12C at 10.03(11) MeV, with a total width of 800(130) keV and a ground state gamma-decay width of 60(10) meV; B(E2:2(2)+→0(1)+)=0.73(13)e(2) fm(4) [or 0.45(8) W.u.]. The Hoyle state and its rotational 2+ state that are more extended than the ground state of 12C presents a challenge and constraints for models attempting to reveal the nature of three alpha-particle states in 12C. Specifically, it challenges the ab initio lattice effective field theory calculations that predict similar rms radii for the ground state and the Hoyle state.

2.
Phys Rev Lett ; 110(20): 202501, 2013 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-25167400

RESUMO

The first measurement of the three-body photodisintegration of longitudinally polarized (3)He with a circularly polarized γ-ray beam was carried out at the High Intensity γ-ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the (3)He Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.

3.
Phys Rev Lett ; 107(22): 222501, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22182024

RESUMO

The intense, nearly monoenergetic, 100% polarized γ-ray beams available at the HIγS facility, along with the realization that the E1-E2 interference term that appears in the Compton scattering polarization observable has opposite signs in the forward and backward angles, make it possible to obtain an order-of-magnitude improvement in the determination of the parameters of the isovector giant quadrupole resonance (IVGQR). Accurate IVGQR parameters will lead to a more detailed knowledge of the symmetry energy in the nuclear equation of state which is important for understanding nuclear matter under extreme conditions such as those present in neutron stars. Our new method is demonstrated for the case of (209)Bi.

4.
Phys Rev Lett ; 88(1): 012502, 2002 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-11800940

RESUMO

The quality and intensity of gamma rays at the High Intensity gamma-ray Source are shown to make nuclear resonance fluorescence studies possible at a new level of precision and efficiency. First experiments have been carried out using an intense (10(7) gamma/s) beam of 100% linearly polarized, nearly monoenergetic, gamma rays on the semimagic nucleus (138)Ba. Negative parity quantum numbers have been assigned to 18 dipole excitations of (138)Ba between 5.5 MeV and 6.5 MeV from azimuthal gamma-intensity asymmetries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA