Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.535
Filtrar
1.
Patient Prefer Adherence ; 17: 249-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36721389

RESUMO

Purpose: To probe into the needs and barriers underlying patients' participation in shared decision-making related to rehabilitation nursing for hemophilic arthropathy. Patients and Methods: The phenomenological research approach was adopted to conduct a series of semi-structured, in-depth interviews with 15 patients with hemophilic arthropathy undergoing rehabilitative treatments, 10 caregivers, and 7 healthcare providers from a hemophilia treatment center in Shanxi province, China. Colaizzi's seven-step method of data analysis was applied to organize, analyze, and extract the themes from the interview materials. Results: Three main themes emerged from the analysis: the status quo of the healthcare system (insufficient decision support systems and mismatch between healthcare providers' and patients' resources), circumstances of provider-patient interactions (lack of information exchange and unbalanced power structure between healthcare providers and patients), and patient-related factors influencing participation in decision-making (lack of self-efficacy, personal characteristics, family and social decision support, and attitude toward participation in decision-making). Conclusion: Participation in rehabilitation decision-making among patients with hemophilic arthropathy is affected by multiple barriers. Healthcare professionals should improve their understanding of shared decision-making, offer patients active guidance on participating in the decision-making process, prioritize their affective needs, and formulate professional and effective solutions to support shared decision-making as early as possible.

2.
Ren Fail ; 45(1): 2171885, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36715437

RESUMO

BACKGROUND: Decreased serum hemoglobin (Hb) level is associated with Immunoglobulin A nephropathy (IgAN) progression. However, whether serum Hb level is an independent prognostic factor of IgAN remains controversial. Herein, we aimed to investigate the prognostic value of serum Hb level in IgAN. METHODS: The Cochrane Library, Embase, PubMed and Open Grey databases were systematically searched and reviewed. Kidney disease progression of IgAN was defined as a doubling of serum creatinine (SCr), a 30% reduction in estimated glomerular filtration rate (eGFR), end-stage renal disease (ESRD), or death. We evaluated the hazard ratio (HR) between serum Hb level and the incidence of kidney disease progression in IgAN before and after adjusting for relevant covariates. RESULTS: We included nine studies with 10006 patients in the meta-analysis. As a continuous variable, we found that serum Hb was an independent prognostic factor of IgAN [unadjusted HR = 0.89, 95% confidence interval (CI) = 0.84-0.95, I2 = 98%; adjusted HR = 0.85, 95% CI = 0.79-0.91, I2 = 0%]. The sensitivity analysis confirmed the stability of these results. Consistently, as a dichotomous variable defined as the below/above cutoff for anemia, we observed a positive correlation between serum Hb and kidney disease progression in IgAN (unadjusted HR = 2.12, 95% CI = 1.44-3.12, I2 = 79%; adjusted HR = 1.65, 95% CI = 1.20-2.27, I2 = 0%). CONCLUSION: Serum Hb level was independently correlated with the incidence of kidney disease progression in IgAN.


Assuntos
Glomerulonefrite por IGA , Falência Renal Crônica , Humanos , Prognóstico , Progressão da Doença , Estudos de Coortes , Falência Renal Crônica/complicações , Hemoglobinas , Estudos Retrospectivos , Taxa de Filtração Glomerular , Estudos Observacionais como Assunto
3.
Pharm Biol ; 61(1): 165-176, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36604842

RESUMO

CONTEXT: Luteolin can affect multiple biological functions, such as anti-inflammatory, antioxidant and immune enhancement processes. Luteolin can inhibit inflammation of T2-high asthma, but its role in neutrophilic asthma has been insufficently studied. OBJECTIVE: This study determines the effect of luteolin on IL-36γ secretion-mediated MAPK pathway signalling in neutrophilic asthma. MATERIALS AND METHODS: The asthma model was established by using ovalbumin/lipopolysaccharide (OVA/LPS). Female 6-8-week-old C57BL/6 mice were divided into control, asthma, luteolin (20 mg/kg) and asthma + luteolin (20 mg/kg) groups. To explore the mechanism of anti-inflammatory effects of luteolin in neutrophilic asthma, Beas-2B cells were treated with luteolin (20 µmol/L), LPS (100 ng/mL), recombinant human IL-36γ protein (rhIL-36γ; 100 ng/mL) or IL-36γ siRNA. RESULTS: IL-36γ secretion and MAPK/IL-1ß signalling were significantly increased in the asthma mouse model compared with the control (p < 0.05). However, the levels of IL-36γ secretion and MAPK/IL-1ß signalling were reduced by luteolin (p < 0.05). In addition, luteolin inhibited IL-36γ and MAPK/IL-1ß levels after LPS (100 ng/mL) stimulation of Beas-2B cells (p < 0.05). We found that in Beas-2B cells, luteolin inhibited activation of the MAPK pathway and IL-1ß secretion following stimulation with rhIL-36γ (100 ng/mL; p < 0.05). Finally, IL-1ß and phosphorylated MAPK levels were found to be lower in the IL-36γ siRNA + LPS (100 ng/mL) group than in the nonspecific control (NC) siRNA + LPS group (p < 0.05). DISCUSSION AND CONCLUSIONS: Luteolin alleviated neutrophilic asthma by inhibiting IL-36γ secretion-mediated MAPK pathways. These findings provided a theoretical basis for the application of luteolin in the treatment of neutrophilic asthma.


Assuntos
Asma , Interleucina-1 , Luteolina , Animais , Feminino , Humanos , Camundongos , Anti-Inflamatórios/uso terapêutico , Luteolina/farmacologia , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno , Interleucina-1/farmacologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-36700822

RESUMO

The exciplex-thermally activated delayed fluorescence (exciplex-TADF) system is an excellent candidate for the fabrication of high-efficiency organic light-emitting diodes (OLEDs) because of its more easily achieved small singlet-triplet energy splitting (ΔEST) and doping control. However, exciplex-TADF is still faced with the problems of low external quantum efficiency (ηext) and unclear effect of structure modification in electron acceptors. Herein, we provide a steric hindrance increase strategy to obtain high-efficiency exciplex emissions. Through introducing a 9-phenylfluorene group into N-ethylcarbazole of the dicyano-substituted 9-phenylfluorene, an electron acceptor material with increased steric hindrance is obtained, which helps the exciplex harvest a larger driving force and higher emission efficiencies. Encouragingly, the obtained OLED displays a maximum ηext of 25.8%, which is one of the best efficiency values among reported exciplex-OLEDs, simultaneously possessing excellent current efficiency of 83.6 cd A-1 and power efficiency of 93.7 lm W-1. It is expected that this work will offer a new avenue for designing electron acceptors for highly efficient exciplex emissions.

5.
Food Funct ; 14(2): 691-702, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36625207

RESUMO

Food nutrition and human health are still interesting international issues. Early detection, risk assessment and diet are vital to mitigate the load of intestinal diseases and enhance the quality of life. Plant-derived microRNAs could be transferred to mammalian organisms by cross-kingdom regulation which adjusts relevant target genes for their participation in the process of carcinogenesis. But the mechanism of plant-derived microRNAs in colorectal cancer is still unclear. This review aims to summarize the current pathways of plant-derived microRNAs in colorectal cancer including intestinal bacteria, the tumor microenvironment, plant active substances and protein, discuss the direct or indirect effects of plant-derived microRNAs on the occurrence and/or progression of colorectal cancer and explain why plant-derived microRNAs can be used as a potential anti-cancer agent. Moreover, the drawbacks of plant-derived microRNAs are also discussed in terms of both edible plants and synthetic delivery vectors for RNAi interference technology for human disease treatment. This review will provide a potential way for plant-derived microRNAs to target colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA de Plantas , Humanos , Neoplasias Colorretais/metabolismo , Dieta , MicroRNAs/genética , Plantas Comestíveis/genética , Qualidade de Vida , Microambiente Tumoral
6.
Chem Commun (Camb) ; 59(8): 1058-1061, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36606583

RESUMO

We demonstrate that target-activated cascade transcription amplification lights up RNA aptamers for label-free detection of metalloproteinase-2 (MMP-2) activity with zero background. This assay exhibits good specificity and high sensitivity with a limit of detection (LOD) of 0.6 fM. Moreover, it can analyze enzyme kinetic parameters, screen inhibitors, and accurately quantify MMP-2 in cancer cells and clinical serums.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Metaloproteinase 2 da Matriz , Aptâmeros de Nucleotídeos/genética , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico
7.
Biochem Biophys Res Commun ; 643: 147-156, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36609155

RESUMO

An increasing number of experimental and clinical observation suggest that the use of anaesthetics is closely associated with postoperative central nervous system (CNS) complications, such as delirium and cognitive dysfunction. Brain energy rescue is an emerging therapeutic strategy for central nervous system disease (CNSDs). However, the effect of anaesthetics on nerve cell energy utilisation, especially microglia, and its potential effects on cell function still unclear. Elucidating the effects of anaesthetics on lipid droplets, which are specific lipid storage organs, and phagocytosis of microglia is crucial to discover a new therapeutic concept for postoperative CNS complications. Here, we studied the effects of the commonly used anaesthetic midazolam on lipid droplets and phagocytosis in immortalised microglial BV2 cells. Lipid droplets were assessed by flow cytometry and triglyceride quantification. The phagocytosis of BV2 cells was evaluated by detecting their phagocytosis by latex beads. Additionally, the autophagy of BV2 cells was evaluated by western blot and observation under microscopy. Our results showed that midazolam caused lipid droplet accumulation and reduced phagocytosis in BV2 cells, and inhibition of lipid droplet accumulation partially restored phagocytosis. Furthermore, midazolam blocks autophagic degradation by increasing phosphorylated TFEB in BV2 cells, inhibition of midazolam-increased phosphorylated TFEB might contribute to the improvement of autophagic flux by rapamycin. Moreover, promoting autophagy reverse the lipid droplet accumulation and phagocytosis decrease. This study suggests autophagy is a target for attenuating lipid droplet accumulation, normal degradation of lipid droplets is important for maintaining microglia phagocytosis and attenuating the side effects of midazolam on the CNS.


Assuntos
Gotículas Lipídicas , Midazolam , Midazolam/farmacologia , Fagocitose , Autofagia , Microglia/metabolismo
8.
ACS Appl Mater Interfaces ; 15(2): 2940-2950, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36598797

RESUMO

The cathodic product Li2CO3, due to its high decomposition potential, has hindered the practical application of rechargeable Li-CO2/O2 batteries. To overcome this bottleneck, a Pt/FeNC cathodic catalyst is fabricated by dispersing Pt nanoparticles (NPs) with a uniform size of 2.4 nm and 8.3 wt % loading amount into a porous microcube FeNC support for high-performance rechargeable Li-CO2/O2 batteries. The FeNC matrix is composed of numerous two-dimensional (2D) carbon nanosheets, which is derived from an Fe-doping zinc metal-organic framework (Zn-MOF). Importantly, using Pt/FeNC as the cathodic catalyst, the Li-CO2/O2 (VCO2/VO2 = 4:1) battery displays the lowest overpotential of 0.54 V and a long-term stability of 142 cycles, which is superior to batteries with FeNC (1.67 V, 47 cycles) and NC (1.87 V, 23 cycles) catalysts. The FeNC matrix and Pt NPs can exert a synergetic effect to decrease the decomposition potential of Li2CO3 and thus enhance the battery performance. In situ Fourier transform infrared (FTIR) spectroscopy further confirms that Li2CO3 can be completely decomposed under a low potential of 3.3 V using the Pt/FeNC catalyst. Impressively, Li2CO3 exhibits a film structure on the surface of the Pt/FeNC catalysts by scanning electron microscopy (SEM), and its size can be limited by the confined space between the carbon sheets in Pt/FeNC, which enlarges the better contacting interface. In addition, density functional theory (DFT) calculations reveal that the Pt and FeNC catalysts show a higher adsorption energy for Li2CO3 and Li2CO4 intermediates compared to the NC catalyst, and the possible discharge pathways are deeply investigated. The synergetic effect between the FeNC support and Pt active sites makes the Li-CO2/O2 battery achieve optimal performance.

9.
Biomed Environ Sci ; 36(1): 76-85, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36650683

RESUMO

Objective: To clarify the epidemiological characteristics and spatial distribution patterns of human norovirus outbreaks in China, identify high-risk areas, and provide guidance for epidemic prevention and control. Methods: This study analyzed 964 human norovirus outbreaks involving 50,548 cases in 26 provinces reported from 2012 to 2018. Epidemiological analysis and spatiotemporal scanning analysis were conducted to analyze the distribution of norovirus outbreaks in China. Results: The outbreaks showed typical seasonality, with more outbreaks in winter and fewer in summer, and the total number of infected cases increased over time. Schools, especially middle schools and primary schools, are the most common settings of norovirus outbreaks, with the major transmission route being life contact. More outbreaks occurred in southeast coastal areas in China and showed significant spatial aggregation. The highly clustered areas of norovirus outbreaks have expanded northeast over time. Conclusion: By identifying the epidemiological characteristics and high-risk areas of norovirus outbreaks, this study provides important scientific support for the development of preventive and control measures for norovirus outbreaks, which is conducive to the administrative management of high-risk settings and reduction of disease burden in susceptible areas.


Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Humanos , Gastroenterite/epidemiologia , Infecções por Caliciviridae/epidemiologia , Surtos de Doenças , China/epidemiologia , Genótipo
10.
Biomed Environ Sci ; 36(1): 10-23, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36650678

RESUMO

Objective: This study assesses the impact of iodine-rich processed foods and dining places on the iodine nutritional status of children. Methods: School-aged children (SAC) in seven provinces in China were selected by school-based multi-stage sampling. Urinary iodine, salt iodine, and thyroid volume (TVOL) were determined. Questionnaires were used to investigate dining places and iodine-rich processed foods. The water iodine was from the 2017 national survey. Multi-factor regression analysis was used to find correlations between variables. Results: Children ate 78.7% of their meals at home, 15.1% at school canteens, and 6.1% at other places. The percentage of daily iodine intake from water, iodized salt, iodine-rich processed foods, and cooked food were 1.0%, 79.2%, 1.5%, and 18.4%, respectively. The salt iodine was correlated with the urinary iodine and TVOL, respectively (r = 0.999 and -0.997, P < 0.05). The iodine intake in processed foods was weakly correlated with the TVOL (r = 0.080, P < 0.01). Non-iodized salt used in processed foods or diets when eating out had less effect on children's iodine nutrition status. Conclusion: Iodized salt remains the primary source of daily iodine intake of SAC, and processed food has less effect on iodine nutrition. Therefore, for children, iodized salt should be a compulsory supplement in their routine diet.


Assuntos
Iodo , Estado Nutricional , Humanos , Criança , Estudos Transversais , Cloreto de Sódio na Dieta/análise , China , Água
11.
Int J Biol Sci ; 19(1): 242-257, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36594089

RESUMO

The triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory immune receptor potentiating acute lung injury (ALI). However, the mechanism of TREM-1-triggered inflammation response remains poorly understood. Here, we showed that TREM-1 blocking attenuated NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome activation and glycolysis in LPS-induced ALI mice. Then, we observed that TREM-1 activation enhanced glucose consumption, induced glycolysis, and inhibited oxidative phosphorylation in macrophages. Specifically, inhibition of glycolysis with 2-deoxyglucose diminished NLRP3 inflammasome activation of macrophages triggered by TREM-1. Hypoxia-inducible factor-1α (HIF-1α) is a critical transcriptional regulator of glycolysis. We further found that TREM-1 activation facilitated HIF-1α accumulation and translocation to the nucleus via the phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway. Inhibiting mTOR or HIF-1α also suppressed TREM-1-induced metabolic reprogramming and NLRP3/caspase-1 activation. Overall, the mTOR/HIF-1α/glycolysis pathway is a novel mechanism underlying TREM-1-governed NLRP3 inflammasome activation. Therapeutic targeting of the mTOR/HIF-1α/glycolysis pathway in TREM-1-activated macrophages could be beneficial for treating or preventing inflammatory diseases, such as ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Animais , Camundongos , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fosfatidilinositol 3-Quinases/metabolismo , Camundongos Endogâmicos NOD , Macrófagos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Glicólise , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Mamíferos/metabolismo
12.
Angew Chem Int Ed Engl ; : e202216950, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36625196

RESUMO

To conquer the bottleneck of sluggish kinetics in cathodic oxygen reduction reaction (ORR) of metal-air batteries, catalysts with dual-active centers have stood out. Here, a "pre-division metal clusters" strategy is firstly conceived to fabricate a N,S-dual doped honeycomb-like carbon matrix inlaid with CoN4 sites and wrapped Co2 P nanoclusters as dual-active centers (Co2 P/CoN4 @NSC-500). A crystalline {CoII 2 } coordination cluster divided by periphery second organic layers is well-designed to realize delocalized dispersion before calcination. The optimal Co2 P/CoN4 @NSC-500 executes excellent 4e- ORR activity surpassing the benchmark Pt/C. Theoretical calculation results reveal that the CoN4 sites and Co2 P nanoclusters can synergistically quicken the formation of *OOH on Co sites. The rechargeable Zn-air battery (ZAB) assembled by Co2 P/CoN4 @NSC-500 delivers ultralong cycling stability over 1742 hours (3484 cycles) under 5 mA cm-2 and can light up a 2.4 V LED bulb for ≈264 hours, evidencing the promising practical application potentials in portable devices.

13.
Nanoscale ; 15(4): 1890-1899, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36606731

RESUMO

Dry eye disease (DED), a complex ocular surface disease with a high prevalence rate, is associated with corneal injury, excess oxidative stress and inflammation. Current therapeutic strategies, including artificial tears and anti-inflammatory agents, are unable to address all the deleterious factors or to achieve a clinical cure due to their temporary or side effects. Here, we prepared a multiple-functional eyedrop based on the deposition of gold nanoparticles (AuNPs) reduced by ascorbic acid (AA) onto the exosomal phospholipid membrane of mesenchymal stem cell (mExo)-derived exosomes in situ (mExo@AA). The therapeutic value of mExo@AA for DED was demonstrated in a mouse DED model. Combining the benefits of mExo and AA, mExo@AA effectively improves corneal epithelium recovery and anti-inflammation capacity, decreases corneal reactive oxygen species, and restores tear secretion without adverse effects. Thus, this study suggests that mExo@AA is effective and safe as a therapeutic agent for the treatment of DED.

14.
J Mater Chem B ; 11(5): 1115-1130, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36636931

RESUMO

The promotion of vascular network formation in the early stages of implantation is considered a prerequisite for successful functional bone regeneration. In this study, we successfully constructed 3D printed scaffolds with strong mechanical strength and a controllable pore structure that can sustainably release strontium (Sr) ions and simvastatin (SIM) for up to 28 days by incorporation of Sr2+ and SIM-loaded hydroxyapatite microspheres (MHA) into a poly(ε-caprolactone) (PCL) matrix. In vitro cell experiments showed that Sr-doped scaffolds were beneficial to the proliferation and osteogenic differentiation of bone mesenchymal stem cells (BMSCs), an appropriate dose of SIM was beneficial to cell proliferation and angiogenesis, and a high dose of SIM was cytotoxic. The Sr- and SIM-dual-loaded scaffolds with an appropriate dose significantly induced osteogenic differentiation of BMSCs and tube formation of human umbilical vein endothelial cells (HUVECs) in vitro and promoted vascular network and functional bone formation in vivo. Ribose nucleic acid (RNA) sequencing analysis suggested that the mechanism of promotion of vascularized bone regeneration by fabricated scaffolds is that dual-loaded Sr2+ and SIM can upregulate osteogenic and vasculogenic-related genes and downregulate osteoclast-related genes, which is beneficial for vascular and new bone regeneration. The 3D printed composite scaffolds loaded with high-stability and low-cost inorganic Sr2+ ions and SIM small-molecule drugs hold great promise in the field of promoting vascularized bone regeneration.

15.
PLoS One ; 18(1): e0280340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701415

RESUMO

INTRODUCTION: Many researchers used machine learning (ML) to predict the prognosis of breast cancer (BC) patients and noticed that the ML model had good individualized prediction performance. OBJECTIVE: The cohort study was intended to establish a reliable data analysis model by comparing the performance of 10 common ML algorithms and the the traditional American Joint Committee on Cancer (AJCC) stage, and used this model in Web application development to provide a good individualized prediction for others. METHODS: This study included 63145 BC patients from the Surveillance, Epidemiology, and End Results database. RESULTS: Through the performance of the 10 ML algorithms and 7th AJCC stage in the optimal test set, we found that in terms of 5-year overall survival, multivariate adaptive regression splines (MARS) had the highest area under the curve (AUC) value (0.831) and F1-score (0.608), and both sensitivity (0.737) and specificity (0.772) were relatively high. Besides, MARS showed a highest AUC value (0.831, 95%confidence interval: 0.820-0.842) in comparison to the other ML algorithms and 7th AJCC stage (all P < 0.05). MARS, the best performing model, was selected for web application development (https://w12251393.shinyapps.io/app2/). CONCLUSIONS: The comparative study of multiple forecasting models utilizing a large data noted that MARS based model achieved a much better performance compared to other ML algorithms and 7th AJCC stage in individualized estimation of survival of BC patients, which was very likely to be the next step towards precision medicine.


Assuntos
Algoritmos , Neoplasias da Mama , Aprendizado de Máquina , Feminino , Humanos , Neoplasias da Mama/terapia , Estudos de Coortes , Prognóstico , Valor Preditivo dos Testes , Bases de Dados Factuais
16.
J Control Release ; 354: 713-725, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702258

RESUMO

Open fractures and internal fixation implants are often accompanied by bacterial infection, leading to osteomyelitis, characterized by intractable bone infection and sequestrum formation, and can result in lifelong disability or fatal sepsis. As common clinical treatment strategies, high-dose antibiotic application and autologous bone transplantation face the risk of recurrence and donor site injury. Herein, we designed and prepared a novel drug delivery system by rational selection of the antibacterial single-chain amphiphile (cetylpyridinium chloride, CPC) and osteoinductive sterol (20S-hydroxycholesterol, Oxy) to formulate CPC/Oxy sterosomes. We demonstrate their excellent biocompatibility and antibacterial ability through 2D and 3D settings in vitro. In addition, the osteogenic differentiation of bone marrow mesenchymal stem cells was investigated in cell monolayers and a hydrogel environment. Moreover, a rat infected critical-sized calvarial defect model was employed to illustrate the effects of antibacterial and osteogenic CPC/Oxy sterosomes in vivo. Our results showed that CPC/Oxy sterosomes not only exterminated bacterial infections, but also enhanced calvarial healing without additional antibiotics, bone formation promoters or exogenous cells. This research provides a promising and effective multifunctional sterosomal platform for the treatment of infected bone defects, with the potential to be combined with therapeutic genes, and small molecule drugs.

17.
Adv Healthc Mater ; : e2202622, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36601733

RESUMO

Lung metastatic breast cancer (LMBC) is mainly diagnosed through CT imaging and radiotherapy could be the most common method in the clinic to inhibit tumor proliferation. While the sensitivity of radiotherapy is always limited due to the hypoxic tumor microenvironment and high doses of irradiation easily induce systemic cytotoxicity. Metal-based materials applied as radiosensitizers have been widely investigated to improve efficiency and reduce the doses of irradiation. Herein, it is aimed to overcome these problems by designing biodegradable lipid-camouflaged bismuth-based nanoflowers (DP-BNFs) as both a photo-thermo-radiosensitizer to develop a novel photothermal therapy (PTT) and radiotherapy combination strategy for LMBC treatment. To achieve effective lung deposition, "Cluster Bomb" structure-based DP-BNFs nano-in-micro dry powder inhalation (DP-BNF@Lat-MPs) are formulated through spray-dried technology. The DP-BNFs "cluster" in the microsphere to improve their tumor-targeted lung deposition with a high fine particle fraction followed by burst releasing of DP-BNFs for targeting delivery and LMBC therapy. The DP-BNF@Lat-MPs exhibit excellent photothermal conversion efficiency, radiotherapy enhancement, and CT imaging ability in vitro, which synergistically inhibit cell proliferation and metastasis. In vitro and in vivo data prove that combining PTT and radiotherapy with DP-BNF@Lat-MPs as a thermo-radio dual-sensitizer significantly enhances LMBC tumor metastasis inhibition with good biocompatibility and low toxicity.

18.
Environ Res ; : 115334, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36702192

RESUMO

Accumulating data demonstrate that polycyclic aromatic hydrocarbons (PAH) exposure is linked to compromised respiratory diseases. This study aimed to analyze urinary PAH metabolites and their associations with chronic obstructive pulmonary disease (COPD) in a sample size of 3015 subjects from a total population of 50,588 from the National Health and Nutrition Examination Survey (NHANES) in 2007-2016. Results showed that the most predominant metabolite was 1-Hydroxynaphthalene (1-NAP, 84%) with a geometric mean concentration of 50,265 ng/L, followed by its homologue 2-NAP (10%), both of which arose from sources including road emission, smoking and cooking. Multiple logistic regression showed that seven of the ten major PAH metabolites were correlated with increased COPD risk: including 1-NAP (OR: 1.83, 95%CI: 1.25, 2.69), 2-Hydroxyfluorene (2-FLU, OR: 2.29, 95%CI: 1.42, 3.68) and 1-Hydroxyphenanthrene (1-PHE, OR: 2.79, 95%CI: 1.85, 4.21), when compared to the lowest tertile after adjusted for covariates. Total exposure burden per PAH congener sub-group demonstrated persistent positive correlation with COPD for ∑PHE (OR: 1.80, 95%CI: 1.34, 2.43) and ∑FLU (OR: 2.74, 95%CI: 1.77, 4.23) after adjusted for covariates. To address the contribution of PAH exposure as mixture towards COPD, weighted quantile sum (WQS) regression analyses revealed that 1-NAP, 9-Hydroxyfluorene (9-FLU), 3-Hydroxyfluorene (3-FLU) and 1-PHE were among the top contributors in the associations with COPD. Our results demonstrate the contemporary yet ongoing exposure burden of PAH exposure for over a decade, particularly towards NAPs and FLUs that contribute significantly to COPD risk, calling for more timely environmental regulation.

19.
Langmuir ; 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706054

RESUMO

Humans may intendedly or unintendedly be exposed to nanomaterials through food, water, and air. Upon exposure, nanomaterials can pierce the bloodstream and translocate to secondary organs, including the brain, which warrants increased concern for the potential health impacts of nanomaterials. Due to their large surface area and interaction energy, nanomaterials can adsorb surrounding proteins. The misfolding and self-aggregation of amyloid-ß (Aß) have been considered significant factors in the pathogenesis of Alzheimer's disease. We thus hypothesize that brain-targeted nanomaterials may modulate Aß aggregation and cause related neurotoxicity. Here, we showed that TiO2 nanoparticles (NPs) and their aminated analogue (TiO2-NH2 NPs) adsorb the Aß42 peptide and accelerate its early oligomerization. Molecular dynamics simulation indicated that the adsorption onto TiO2 NPs and TiO2-NH2 NPs surfaces can stabilize the ß-sheet-rich conformations formed by the Aß42 peptide. The binding sites between TiO2-NH2 NPs and the Aß42 oligomer surface were mainly concentrated in the hydrophobic core region, and the ß-sheet conformation spontaneously formed by Aß42 oligomers can be better stabilized through a hydrogen bond, electrostatic attraction, and hydrophobic interaction. This study will further help in the understanding of nanomaterial-related neurotoxicities and the regulation of their applications.

20.
Artigo em Inglês | MEDLINE | ID: mdl-36648523

RESUMO

Nearly 80% of the approved human therapeutic antibodies are produced by Chinese Hamster Ovary (CHO) cells. To achieve better cell growth and high-yield recombinant protein, fed-batch culture is typically used for recombinant protein production in CHO cells. According to the demand of nutrients consumption, feed medium containing multiple components in cell culture can affect the characteristics of cell growth and improve the yield and quality of recombinant protein. Fed-batch optimization should have a connection with comprehensive factors such as culture environmental parameters, feed composition, and feeding strategy. At present, process intensification (PI) is explored to maintain production flexible and meet forthcoming demands of biotherapeutics process. Here, CHO cell culture, feed composition in fed-batch culture, fed-batch culture environmental parameters, feeding strategies, metabolic byproducts in fed-batch culture, chemostat cultivation, and the intensified fed-batch are reviewed. KEY POINTS: • Fed-batch culture in CHO cells is reviewed. • Fed-batch has become a common technology for recombinant protein production. • Fed batch culture promotes recombinant protein production in CHO cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...