Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-32516533

RESUMO

Recently, wearable pressure sensors have attracted considerable interest in various fields such as healthcare monitoring, intelligent robots, etc. Although artificial structures or conductive materials have been well developed, the trade-off between sensitivity and linearity of pressure sensors is yet to be fully resolved by a traditional approach. Herein, from theoretical analysis to experimental design, we present the novel CPDMS/AgNWs double conductive layer (DCL) to synergistically optimize the sensitivity and linearity of piezoresistive pressure sensors. The facilely fabricated solid microdome array (SDA) is first employed as the elastomer to clarify the unrevealed working mechanism of DCL. Attributed to the synergistic effect of DCL, the DCL/SDA based sensor exhibits ultrahigh sensitivity (up to 3788.29 kPa-1) in an obviously broadened linearity range (0-6 kPa). We also demonstrated that the synergistic effect of DCL can be regulated with use of porous microdome array (PDA) to further optimize the sensing property. The linearity range can be improved up to 70 kPa while preserving the high sensitivity of 924.37 kPa-1 based on the interlocked PDA structure (IPDA), which is rarely reported in previous studies. The optimized sensitivity and linearity allow the competitive DCL/IPDA based sensor as a reliable platform to monitor kinds of physiological signals covering from low pressures (e.g., artery pulses), medium pressures (e.g., muscle expansions), to high pressures (e.g., body motions). We believe that the methodology along with the robust sensor can be of great potential for reliable healthcare monitoring and wearable electronic applications in the future.

2.
Small ; 16(18): e2000307, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32250065

RESUMO

Alpha-methylacyl-CoA racemase (AMACR) has been proven to be consistently overexpressed in prostate cancer epitheliums, and is expected to act as a positive biomarker for the diagnosis of prostate carcinoma in clinical practice. Here, a strategy for specific determination of AMACR in real human serum by using an electrochemical microsensor system is presented. In order to implement the protocol, a self-organized nanohybrid consisting of metal nanopillars in a 2D MoS2 matrix is developed as material for the sensing interface. The testing signal outputs are strongly enhanced with the presence of the nanohybrids owing to that the metal pillars provide an efficient mass difussion and electron transfer path to the MoS2 film surface. Furthermore, the phase-regulated sensing mechanism over MoS2 is noticed and demonstrated by density functional theory calculation and experiments. The explored MoS2 based nanohybrids are employed for the fabrication of an electrochemical microsensor, presenting good linear relationship in both ng µL-1 and pg µL-1 ranges for AMACR quantification. The sampling analysis of human serum indicates that this microsensor has good diagnostic specificity and sensitivity toward AMACR. The proposed electrochemical microsensor system also demonstrates the advantages of convenience, cost-effectiveness, and disposability, resulting in a potential integrated microsystem for point-of-care prostate cancer diagnosis.

3.
Phys Rev Lett ; 124(7): 075501, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32142315

RESUMO

Low-energy electrons near Dirac/Weyl nodal points mimic massless relativistic fermions. However, as they are not constrained by Lorentz invariance, they can exhibit tipped-over type-II Dirac/Weyl cones that provide highly anisotropic physical properties and responses, creating unique possibilities. Recently, they have been observed in several quantum and classical systems. Yet, there is still no simple and deterministic strategy to realize them since their nodal points are accidental degeneracies, unlike symmetry-guaranteed type-I counterparts. Here, we propose a band-folding scheme for constructing type-II Dirac points, and we use a tight-binding analysis to unveil its generality and deterministic nature. Through realizations in acoustics, type-II Dirac points are experimentally visualized and investigated using near-field mappings. As a direct effect of tipped-over Dirac cones, strongly tilted kink states originating from their valley-Hall properties are also observed. This deterministic scheme could serve as a platform for further investigations of intriguing physics associated with various strongly Lorentz-violating nodal points.

4.
Biomed Eng Online ; 19(1): 9, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050989

RESUMO

The organ-on-a-chip (OOAC) is in the list of top 10 emerging technologies and refers to a physiological organ biomimetic system built on a microfluidic chip. Through a combination of cell biology, engineering, and biomaterial technology, the microenvironment of the chip simulates that of the organ in terms of tissue interfaces and mechanical stimulation. This reflects the structural and functional characteristics of human tissue and can predict response to an array of stimuli including drug responses and environmental effects. OOAC has broad applications in precision medicine and biological defense strategies. Here, we introduce the concepts of OOAC and review its application to the construction of physiological models, drug development, and toxicology from the perspective of different organs. We further discuss existing challenges and provide future perspectives for its application.

5.
J Colloid Interface Sci ; 564: 381-391, 2020 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-31923826

RESUMO

HYPOTHESIS: Electrorheological fluid (ERF) is a kind of suspension or colloid composed of fine particles and insulating oil as continuous phase. The second miscible liquid phase with less affinity to the particles than the continuous phase is expected to influence particles aggregation, assembly and spanning mesostructures. Hence, it should be possible to tune the rheological and electrorheological properties and stability by the addition of second miscible liquid with different chain length and substituents. EXPERIMENTS: We developed a giant ERF (GERF) with a binary liquid phase (BLP) by the addition of alkane to the silicone oil continuous phase. We studied the shear stress and viscosity under different shear rates, thixotropy and particle size distributions of these suspensions and characterized the concentration variation of GERFs under quiescent conditions by measuring the backscattering light intensity variation through vertical scanning. FINDINGS: The dispersed particle size distribution is broadened, which produces higher static yield stress and lower zero-field viscosity than those of a single-liquid-phase GERF. The ER efficiency is much higher with the addition of alkane, reaching 10656, which is 1.8 times larger than that of single-liquid-phase suspensions. We performed 100-day stability testing and found that the GERF with 1-phenyldodecane showed excellent stability and performance.

6.
Environ Sci Pollut Res Int ; 27(10): 10472-10483, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31939022

RESUMO

Critical periods (CPs) and critical source areas (CSAs) refer to the high-risk periods and areas of nonpoint source (NPS) pollution in a watershed, respectively, and they play a significant role in NPS pollution control. The upstream Daning River Basin is a typical watershed in the Three Gorges Reservoir area. In this study, a Hydrological Simulation Program-Fortran (HSPF) model was used to simulate phosphorus loss in the upstream Daning River Basin. Co-analysis of critical periods and critical source areas (CACC) is a quantitative collaborative analysis method for the identification of CSAs in CPs, and it was used to classify the periods and areas of NPS pollution as CPs, sub-CPs, non-CPs, CSAs, and non-CSAs. The CPs occurred in months 5-7 and accounted for 53.7% of the total phosphorus (TP) loads, and the sub-CPs occurred in months 1, 3, 4, and 8 and accounted for 29.2% of the TP loads. In CSAs, 49.4% of the TP loads occurred in 26.8% of the basin. Furthermore, we proposed the following multilevel priority control measure for NPS pollution in the upstream Daning River Basin: CSAs in CPs (with load-area rate of 1.4), CSAs in sub-CPs (0.7), CSAs in non-CPs (0.4), non-CSAs in CPs (0.3), non-CSAs in sub-CPs (0.2), and non-CSAs in non-CPs (0.1). CSAs in CPs accounted for 25.8% of the TP loads from 19.0% of the areas in only 3 months while 49.4% of the TP loads from similar areas over an entire year. These findings indicated that the CSAs in CPs located in farmland along the Daning, Dongxi, and Houxi Rivers should be prioritized for pollution management measures.

7.
ACS Appl Mater Interfaces ; 12(2): 2662-2670, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31854181

RESUMO

Single-crystalline halide perovskites with regular morphology are of great significance for laser applications because they can be used to fabricate a natural whispering-gallery-mode resonator. Although enormous efforts have been put to synthesize single-crystalline perovskites, controlling the lateral size and thickness of the crystal, particularly at the nanoscale, is still challenging. Here, we report a facile and high-throughput strategy to selectively one-step create micro/nanoscale size-controlled all-inorganic perovskite single-crystal arrays by surface-tension-confined evaporative assembly. Our method can be used to easily tune the single crystal size and selectively position the single crystal, with versatility in fabricating perovskite single-crystal arrays in a wafer scale. When the patterned size increases from 2 to 25 µm, the width of the CsPbClBr2 perovskite microplates increased from 150 nm to 4.2 µm. Fixing the width of the microplates at 1.6 µm, with the increase of the sliding speed from 50 to 250 mm/min, we could significantly control the thicknesses from 270 to 430 nm. Additionally, our present study provides a characterization of lasers based on different three-dimensional structures, confirming their width-dependent lasing mode and thickness-dependent lasing threshold characteristic, which is beneficial for the tunability of a high-performance microlaser.

8.
Micromachines (Basel) ; 10(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557924

RESUMO

Separation and concentration of target bacteria has become essential to sensitive and accurate detection of foodborne bacteria to ensure food safety. In this study, we developed a bacterial separation system for continuous-flow separation and efficient concentration of foodborne bacteria from large volume using a nickel nanowire (NiNW) bridge in the microfluidic chip. The synthesized NiNWs were first modified with the antibodies against the target bacteria and injected into the microfluidic channel to form the NiNW bridge in the presence of the external arc magnetic field. Then, the large volume of bacterial sample was continuous-flow injected to the channel, resulting in specific capture of the target bacteria by the antibodies on the NiNW bridge to form the NiNW-bacteria complexes. Finally, these complexes were flushed out of the channel and concentrated in a lower volume of buffer solution, after the magnetic field was removed. This bacterial separation system was able to separate up to 74% of target bacteria from 10 mL of bacterial sample at low concentrations of ≤102 CFU/mL in 3 h, and has the potential to separate other pathogenic bacteria from large volumes of food samples by changing the antibodies.

9.
Nanoscale ; 11(43): 20534-20545, 2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31498365

RESUMO

Surface-enhanced Raman scattering (SERS) has attracted extensive interest due to excellent molecule recognition and sensitive concentration detection. Nevertheless, the coffee ring effect (CR) during the analyte evaporation always causes an uneven distribution of the assembled hot-spots, and hence the unreliable SERS signal is produced. In this study, for the first time, we present a suppressed coffee ring (SCR) system via a combination of a magnetically functionalized membrane and reciprocating magnetic field to dynamically suppress the CR for highly reliable and ultra-sensitive SERS detection. The enrichment mechanism of the nanoparticles and the analyte molecules within the sessile droplet based on the proposed system was studied. We experimentally observed that the driving frequency could well affect the final pattern, and typically a higher driving frequency facilitated a smaller coverage area with better enrichment performance. With the use of R6G molecule and (100 nm) gold nanoparticles, we examined the uniformity and SERS of the assembled 'hot-spots' in the SCR system. The results indicate that the uniformity can be greatly improved via SCR in comparison of ring stain, with the RSD of a Raman signal as low as 7.1% even at a low concentration of 10-12 mol L-1. Such system also enables the further enhancement in the SERS signal, with the detection limit down to 10-16 mol L-1, the enhancement factor magnitude up to 1013, and the linear relationship between the SERS intensity and the analyte concentrations within the range of 10-6-10-12 and 10-12-10-16 mol L-1, respectively. The applicability of the SCR-based SERS detection for diverse analytes was also proved with a similar but further enhanced signal of MB and 4-ATP. We believe that the excellent SCR-based SERS performance via the proposed system has great potentials for ultra-sensitive detection and/or precise quantitative analysis in various research fields and applications.

10.
ACS Appl Mater Interfaces ; 11(31): 28060-28071, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306581

RESUMO

The development of flexible pressure sensors has attracted increasing research interest for potential applications such as wearable electronic skins and human healthcare monitoring. Herein, we demonstrated a piezoresistive pressure sensor based on AgNWs-coated hybrid architecture consisting of mesoscaled dome and microscaled pillar arrays. We experimentally showed that the key three-dimensional component for a pressure sensor can be conveniently acquired using a vacuum application during the spin-coating process instead of a sophisticated and expensive approach. The demonstrated hybrid structure exhibits dramatically improved sensing capability when compared with the conventional one-fold dome-based counterpart in terms of the sensitivity and detectable pressure range. The optimized sensing performance, by integrating D1000 dome and D50P100 MPA, reaches a superior sensitivity of 128.29 kPa-1 (0-200 Pa), 1.28 kPa-1 (0.2-10 kPa), and 0.26 kPa-1 (10-80 kPa) and a detection limit of 2.5 Pa with excellent durability. As a proof-of-concept, the pressure sensor based on the hybrid configuration was demonstrated as a versatile platform to accurately monitor different kinds of physical signals or pressure sources, e.g., wrist pulse, voice vibration, finger bending/touching, gas flow, as well as address spatial loading. We believe that the proposed architecture and developed methodology can be promising for future applications including flexible electronic devices, artificial skins, and interactive robotics.

11.
Opt Express ; 27(10): 14407-14422, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163891

RESUMO

Plasmonic cluster arrays have demonstrated rich physics in topological photonics, but they are seriously affected by the material loss and limited by the requirement of high-precision machining. Here, we propose a kind of ultra-thin metaparticle arrays which can mimic the coupled localized plasmonic resonances at lower frequency ranges and so that can overcome the loss and fabrication problems in real metal plasmonic systems. The metaparticle is a metallic disk with circuitous grooves that can support both spoof electric and magnetic localized resonances, and these resonances can be pushed to a subwavelength region through tuning the geometric parameters. In virtue of the highly field confinement of these localized resonances, it is thought to be an ideal experimental platform to be an analogy with various near-field interactions in topological materials. As a first proof-of-concept study to show this feasibility, the subwavelength topological edge states at the zigzag metaparticle chain boundaries are numerically and experimentally demonstrated at microwave ranges. Moreover, the subwavelength topological edge states in this zigzag chain can be excited simply by the plane wave incidence, and the edge modes at two ends can be selectively excited by controlling the polarization direction. Therefore, this kind of metaparticle array not only provides an ideal platform to experimentally study various near-filed interaction dominated topological systems but may also find massive potential applications.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 220: 117113, 2019 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-31141779

RESUMO

On-chip fabrication of surface-enhanced Raman spectroscopy (SERS)-active materials enables continuous, real-time sensing of targets in the microfluidic chip. However, the current techniques require the time-consuming, complicated process and costly, bulky facilities. In this work, we present a novel method for synthesis of Ag nanostructures in a microfluidic channel via one-step electroless galvanic replacement reaction. The whole reaction could be achieved <10 mins, while the traditional methods take hours. The microfluidic channel has a Cu base, which can reduce Ag ions to Ag nanoparticles in the presence of AgNO3 solution. The new technique enables the label-free sensing of chemical molecules (i.e., methylene blue) and biomolecules (i.e., urea). Two proof-of-concept experiments are performed to verify the utilization of the prepared SERS substrate. First, the microfluidics-assisted SERS sensor is used to detect Hg ions in aqueous solution with high sensitivity and good selectivity. Second, the fabricated SERS-active material can couple with a concentration gradient generator for continuous SERS detection. This simple technique can be used in any laboratory without any bulky equipment and can realize numerous lab-on-a-chip applications with the integration of other microfluidic networks.

13.
ACS Appl Mater Interfaces ; 11(23): 20734-20742, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31094505

RESUMO

Phenylketonuria (PKU) is a common disease in congenital disorder of amino acid metabolism, which can lead to intellectual disability, seizures, behavioral problems, and mental disorders. We report herein a facile method to screen for PKU by the measurements of its metabolites (markers). In this work, a disposable electrochemical microsensor modified with a ZIF (zeolitic imidazolate framework)-based nanocomposite is constructed, in which ZIF-67 crystals are encapsulated with PtPd alloy nanoparticles (NPs) forming the nanocomposite (PtPd@ZIF-67). According to electrochemical measurements, the PtPd@ZIF-67-modified microsensor shows good responses and selectivity to phenylpyruvic acid and phenylacetic acid, while almost no response toward other amino acid analogues is observed. Here, a new sensing mechanism based on the acylation reaction between the imidazole linker in ZIF-67 and carboxyl in PKU markers has been proposed and verified through the Fourier-transform infrared spectroscopy study. Moreover, the encapsulated PtPd NPs elevate the electron transfer capability of the PtPd@ZIF-67-modified microsensor and further improve the electrochemical sensing performance. Finally, we demonstrate that the developed PtPd@ZIF-67-modified microsensor has the possibility to sensing of PKU markers with high response and good specificity and may be extended to exploit the point-of-care rapid PKU screening.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Nanocompostos/química , Nanopartículas/química , Animais , Etilenoglicol/química , Humanos , Microscopia Eletrônica de Transmissão , Fenilcetonúrias/diagnóstico , Fenilcetonúrias/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Electrophoresis ; 40(12-13): 1699-1707, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30977901

RESUMO

Point-of-care detection for pathogen is of critical need for wide epidemic warning and medical diagnosis. In this work, we have designed and developed a fully portable and integrated microchip based real-time polymerase chain reaction machine for rapid pathogen detection. The instrument consists of three functional components including heating, optical, and electrical modules, which are integrated into a portable compact box. The microchip is consumable material replaceable to meet various detection needs. Consequently, we demonstrated the outstanding performance of this portable machine for rapid detection of Salmonella and Escherichia coli O157:H7 with the advantage of time-saving (∼25 min), less samples consumption, portability, and user-friendly operation.


Assuntos
DNA Bacteriano , Tipagem Molecular , Testes Imediatos , Reação em Cadeia da Polimerase em Tempo Real , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Desenho de Equipamento , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação , Células HeLa , Humanos , Tipagem Molecular/instrumentação , Tipagem Molecular/métodos , Reação em Cadeia da Polimerase em Tempo Real/instrumentação , Reação em Cadeia da Polimerase em Tempo Real/métodos , Salmonella/genética , Salmonella/isolamento & purificação
15.
Nanotechnology ; 30(33): 335708, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31018194

RESUMO

Zeolitic imidazole frameworks (ZIFs) are a new class of functional porous materials with attractive characters, such as gas storage, selective separation, catalysis, and drug delivery. We report herein using nanoscale ZIF-90 crystals with free aldehyde group of imidazole-2-carboxaldehyde (ICA) ligand for the selective electrochemical detection of dopamine. The averaged adsorption enthalpy ΔH (i.e., isosteric heat) of ZIF-90 to dopamine is estimated as 72 kJ mol-1 according to grand canonical Monte Carlo (GCMC) simulation. With further modification of a Pt41Rh59 alloy nanocatalyst, the electrochemical sensing performances towards dopamine are improved. The synergetic effect generated by a Pt41Rh59/ZIF-90 nanocomposite endows it a low detection limit of 1 nM and good specificity. The different anti-interference mechanisms to coexisting redox active species and amino analogues are also included in this work. The strategy demonstrated here may be extended to tune metal nodes as well as ligands of ZIFs crystals and further regulating their functionalities for different target molecules identification.


Assuntos
Dopamina/análise , Imidazóis/química , Nanocompostos/química , Bases de Schiff/química , Zeolitas/química , Ligas/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Platina/química , Ródio/química , Termodinâmica
16.
Micromachines (Basel) ; 10(3)2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30909465

RESUMO

The result of molecular diagnostic and detection greatly dependent on the quality and integrity of the isolated nucleic acid. In this work, we developed an automated miniaturized nucleic acid extraction device based on magnetic beads method, consisting of four components including a sample processing disc and its associated rotary power output mechanism, a pipetting module, a magnet module and an external central controller to enable a customizable and automated robust nucleic acid sample preparation. The extracted nucleic acid using 293T cells were verified using real-time polymerase chain reaction (PCR) and the data implies a comparable efficiency to a manual process, with the advantages of performing a flexible, time-saving (~10 min), and simple nucleic acid sample preparation.

17.
Phys Rev Lett ; 121(2): 024301, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085689

RESUMO

Topological characteristics of energy bands, such as Dirac and Weyl nodes, have attracted substantial interest in condensed matter systems as well as in classical wave systems. Among these energy bands, the type-II Dirac point is a nodal degeneracy with tilted conical dispersion, leading to a peculiar crossing dispersion in the constant-energy plane. Such nodal points have recently been found in electronic materials. The analogous topological feature in photonic systems remains a theoretical curiosity, with experimental realization expected to be challenging. Here, we experimentally realize the type-II Dirac point using a planar metasurface architecture, where the band degeneracy point is protected by the underlying mirror symmetry of the metasurface. Gapless edge modes are found and measured at the boundary between the different domains of the symmetry-broken metasurface. Our Letter shows that metasurfaces are simple and practical platforms for realizing electromagnetic type-II Dirac points, and their planar structure is a distinct advantage that facilitates applications in two-dimensional topological photonics.

18.
Genes (Basel) ; 9(6)2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874840

RESUMO

Recently, microfluidic technologies have attracted an enormous amount of interest as potential new tools for a large range of applications including materials synthesis, chemical and biological detection, drug delivery and screening, point-of-care diagnostics, and in-the-field analysis. Their ability to handle extremely small volumes of fluids is accompanied by additional benefits, most notably, rapid and efficient mass and heat transfer. In addition, reactions performed within microfluidic systems are highly controlled, meaning that many advanced materials, with uniform and bespoke properties, can be synthesized in a direct and rapid manner. In this review, we discuss the utility of microfluidic systems in the synthesis of materials for a variety of biological applications. Such materials include microparticles or microcapsules for drug delivery, nanoscale materials for medicine or cellular assays, and micro- or nanofibers for tissue engineering.

19.
Anal Chem ; 90(7): 4303-4309, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29569893

RESUMO

High-throughput measurements can be achieved using droplet-based assays. In this study, we exploited the principles of wetting behavior and capillarity to guide liquids sliding along a solid surface with hybrid wettability. Oil-covered droplet arrays with uniformly sized and regularly shaped picoliter droplets were successfully generated on hydrophilic-in-hydrophobic patterned substrates. More than ten thousand 31-pL droplets were generated in 5 s without any sophisticated instruments. Covering the droplet arrays with oil during generation not only isolated the droplets from each other but also effectively prevented droplet evaporation. The oil-covered droplet arrays could be stored for more than 2 days with less than 35% volume loss. Single microspheres, microbial cells, or mammalian cells were successfully captured in the droplets. We demonstrate that Escherichia coli could be encapsulated at a certain number (1-4) and cultured for 3 days in droplets. Cell population and morphology were dynamically tracked within individual droplets. Our droplet array generation method enables high-throughput processing and is facile, efficient, and low-cost; in addition, the prepared droplet arrays have enormous potential for applications in chemical and biological assays.


Assuntos
Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Ensaios de Triagem em Larga Escala , Análise de Célula Única , Contagem de Colônia Microbiana , Escherichia coli/isolamento & purificação , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Propriedades de Superfície
20.
Electrophoresis ; 39(12): 1460-1465, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29543983

RESUMO

This work presents a simple, low-cost method to fabricate semi-circular channels using solder paste, which can amalgamate the cooper surface to form a half-cylinder mold using the surface tension of Sn-Pd alloy (the main component in solder paste). This technique enables semi-circular channels to be manufactured with different dimensions. These semi-circular channels will then be integrated with a polymethylmethacrylate frame and machine screws to create miniaturized, portable microfluidic valves for sequential liquid delivery and particle synthesis. This approach avoids complicated fabrication processes and expensive facilities and thus has the potential to be a useful tool for lab-on-a-chip applications.


Assuntos
Microfluídica , Ligas/química , Desenho de Equipamento/instrumentação , Dispositivos Lab-On-A-Chip , Paládio/química , Tensão Superficial , Estanho/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA