Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Viruses ; 13(3)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800270

RESUMO

Picobirnaviruses (PBVs) are small non-enveloped bisegmented double-stranded RNA viruses found in humans, mammals, and birds. Increasing molecular epidemiology studies suggest a high sequence diversity of PBVs in numerous hosts and the environment. In this study, using 229 fecal samples from dromedary camels in Dubai, 52.8% were positive for PBVs, of which 77.7% and 41.3% were positive for genogroup I and II, respectively, and 19.0% were positive for both genotypes. Phylogenetic analysis showed high diversity among the sequences of genogroup I and II dromedary PBVs. Marked nucleotide polymorphisms were observed in 75.5% and 46.0% of genogroup I and II RNA-dependent RNA polymerase (RdRp) sequences, respectively, suggesting the co-existence of multiple strains in the same specimen. Both high genetic diversity and prevalence of genogroup I and II PBV in dromedaries were observed. In fact, the prevalence of genogroup II PBV in dromedaries is the highest among all animals to date. The complete/near-complete core genomes of five genogroup I and one genogroup II dromedary PBVs and partial segment 1 and 2 of both genotypes were also sequenced. The dromedary PBV genome organizations were similar to those of other animals. Genetic reassortment and mutation are both important in the ecology and evolution of PBVs.

2.
Transbound Emerg Dis ; 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33245616

RESUMO

Glanders is a contagious zoonotic disease caused by Burkholderia mallei. Following the detection of glanders positive horses using the OIE complement fixation test, the tissues of two horses were analysed by PCR. While PCR systems targeting the Burkholderia pseudomallei complex gave positive signals, the species-specific PCR systems targeting B. mallei (fliP-IS407A) and B. pseudomallei (orf11)-the OIE recommended targets-resulted in negative signals. However, the presence of B. mallei in these tissues was confirmed with a recently described B. mallei-specific real-time PCR system and genotyping with MLST- and SNP-based methods, performed on the most positive tissue, identified a genotype closely related to B. mallei strains recently isolated in the Middle East. This study leads to recommendations regarding the use of PCR systems for the molecular diagnosis of glanders, especially in regions where the circulating B. mallei strains have not yet been fully genetically characterized.

3.
Equine Vet J ; 2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33011979

RESUMO

BACKGROUND: African horse sickness (AHS) is a devastating viral disease of equids that was first recorded in 1327. Currently, prevention and control of the disease are based on attenuated vaccines and midge control. It has been shown that attenuated Orbivirus vaccines are not always safe as they may reverse to virulence. OBJECTIVES: In the Emirate of Dubai, a vaccination experiment was carried out with an inactivated AHS vaccine produced at the Central Veterinary Research Laboratory (CVRL), Dubai, UAE to investigate the humoral antibody response of AHS-naïve horses to this vaccine. Our vaccination experiment was performed to establish an AHS vaccine bank in the UAE to protect horses from the disease in case of an outbreak. Therefore, CVRL established an inactivated AHS vaccine containing all nine serotypes which induce high neutralising antibodies. STUDY DESIGN: A total of 10 horses kept in a desert isolation area were subcutaneously and intramuscularly vaccinated with an inactivated vaccine containing all nine AHS serotypes previously isolated from Kenyan horse fatalities. Primary immunisation was followed by two booster immunisations 4 weeks and 6 months apart. After 13 months, an annual booster was administered. METHODS: Blood samples were regularly withdrawn for ELISA and virus neutralisation testing. Additionally, EDTA blood was tested every second day for 14 days post each vaccination for the presence of AHS virus or its RNA. RESULTS: Results show that ELISA and virus neutralising antibodies appeared after the first booster, declined after 4-6 months and therefore three vaccinations and an annual vaccination are necessary to achieve high protective virus neutralising antibodies. MAIN LIMITATIONS: No challenge infection was carried out due to the lack of a safe facility in the UAE. CONCLUSION: Before more advanced AHS vaccines become a reality, inactivated vaccines containing all nine serotypes should be used as they produce high ELISA and neutralising antibodies.

4.
BMC Vet Res ; 16(1): 322, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873300

RESUMO

BACKGROUND: African horse sickness (AHS) is a serious viral disease of equids resulting in the deaths of many equids in sub-Saharan Africa that has been recognized for centuries. This has significant economic impact on the horse industry, despite the good husbandry practices. Currently, prevention and control of the disease is based on administration of live attenuated vaccines and control of the arthropod vectors. RESULTS: A total of 29 horses in 2 groups, were vaccinated. Eighteen horses in Group 1 were further divided into 9 subgroups of 2 horses each, were individually immunised with one of 1 to 9 AHS serotypes, respectively. The eleven horses of Group 2 were immunised with all 9 serotypes simultaneously with 2 different vaccinations containing 5 serotypes (1, 4, 7-9) and 4 serotypes (2, 3, 5, 6) respectively. The duration of this study was 12 months. Blood samples were periodically withdrawn for serum antibody tests using ELISA and VNT and for 2 weeks after each vaccination for PCR and virus isolation. After the booster vaccination, these 27 horses seroconverted, however 2 horses responded poorly as measured by ELISA. In Group 1 ELISA and VN antibodies declined between 5 to 7 months post vaccination (pv). Twelve months later, the antibody levels in most of the horses decreased to the seronegative range until the annual booster where all horses again seroconverted strongly. In Group 2, ELISA antibodies were positive after the first booster and VN antibodies started to appear for some serotypes after primary vaccination. After booster vaccination, VN antibodies increased in a different pattern for each serotype. Antibodies remained high for 12 months and increased strongly after the annual booster in 78% of the horses. PCR and virus isolation results remained negative. CONCLUSIONS: Horses vaccinated with single serotypes need a booster after 6 months and simultaneously immunised horses after 12 months. Due to the non-availability of a facility in the UAE, no challenge infection could be carried out.

5.
Emerg Infect Dis ; 26(9): 2214-2217, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32818408

RESUMO

Orthohepevirus A genotype 7 is a novel zoonotic variant of hepatitis E virus. To clarify infection in the animal reservoir, we virologically monitored 11 dromedary dam-calf pairs. All calves became infected during the first 6 months of life and cleared the virus after an average of 2 months. Dams did not become infected.

6.
Transbound Emerg Dis ; 67(6): 2881-2891, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32502324

RESUMO

Peste des petits ruminants (PPR) is a fatal disease of small ruminants which has spread rapidly to previously PPR-free countries in recent decades, causing enormous economic losses in the affected regions. Here, two newly emerged PPR virus (PPRV) isolates from India and from the Middle East were tested in an animal trial to analyse their pathogenesis, and to evaluate serological and molecular detection methods. Animals infected with the two different PPRV isolates showed marked differences in clinical manifestation and scoring. The PPRV isolate from India was less virulent than the virus from the Middle East. Commercially available rapid detection methods for PPRV antigen (two Lateral Flow Devices (LFDs) and one antigen ELISA) were evaluated in comparison with a nucleic acid detection method. For this purpose, ocular and nasal swabs were used. Due to the easy non-invasive sampling, faecal samples were also analysed. For all rapid antigen detection methods, a high specificity of 100% was observed independent of the sample matrix and dilution buffers used. Both antigen ELISA and LFD tests showed highest sensitivities for nasal swabs. Here, the detection rate of the antigen ELISA, the LFD-PESTE-TEST and the LFD-ID Rapid-Test was 78%, 75% and 78%, respectively. Ocular swabs were less suitable for antigen detection of PPRV. These results reflect the increased viral load in nasal swabs of PPRV infected goats compared to ocular swabs. The faecal samples were the least suitable for antigen detection. In conclusion, nasal swab samples are the first choice for the antigen and genome detection of PPRV. Nevertheless, based on the excellent diagnostic specificity of the rapid tests, positive results generated with other sample matrices are solid. In contrast, negative test results can be caused on the reduced analytical sensitivity of the rapid antigen tests and must be treated with caution.

7.
J Equine Vet Sci ; 88: 102967, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32303305

RESUMO

Our investigation has shown that multiple vaccinations with inactivated African horse sickness (AHS) vaccines containing all 9 serotypes and produced at the Central Veterinary Research Laboratory in Dubai, UAE, protect horses from AHS. However, the immunization did not prevent African horse sickness fever (AHSF) in approximately 10% of the vaccinated horses despite high enzyme-linked immunosorbent assay and virus neutralizing antibodies. African horse sickness fever is a very mild form of AHS with similar clinical signs. From all 6 horses which had developed AHSF, no virus was isolated from EDTA blood withdrawn during the acute phase of infection. Despite high neutralizing antibodies, serotype 9 was detected by polymerase chain reaction in 4 of them. All 6 horses recovered within 72 hours, after they developed mild clinical signs of AHS.

8.
Vet Microbiol ; 242: 108597, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122601

RESUMO

The accurate identification of Taylorella equigenitalis strains is essential to improve worldwide prevention and control strategies for contagious equine metritis (CEM). This study compared 367 worldwide equine strains using multilocus sequence typing according to the geographical origin, isolation year and equine breed. The strains were divided into 49 sequence types (STs), including 10 described for the first time. Three major and three minor clonal complexes (CCs), and 11 singletons, were identified. The genetic heterogeneity was low (0.13 STs/strain) despite the wide diversity of geographical origins (n = 16), isolation years (1977-2018) and equine breeds (n = 18). It was highest outside Europe and in the 1977-1997 period; current major STs and CCs already existed before 1998. Previous data associated the major CC1 with the first CEM outbreaks in 1977-1978 in the United Kingdom, Australia and the United States, and revealed its circulation in France. Our study confirms its circulation in France over a longer period of time (1992-2018) and its distribution in Spain and Germany but not throughout Europe. In addition to CC1, relationships between non-European and European countries were observed only through ST4, ST17 and ST30. Within Europe, several STs emerged with cross-border circulation, in particular ST16 and ST46 from the major complexes CC2 and CC8. These results constitute a baseline for monitoring the spread of CEM outbreaks. A retrospective analysis of a higher number of strains isolated worldwide between 1977 and the early 2000s would be helpful to obtain an exhaustive picture of the original CEM situation.


Assuntos
Surtos de Doenças/veterinária , Infecções por Bactérias Gram-Negativas/veterinária , Doenças dos Cavalos/epidemiologia , Cavalos/microbiologia , Análise Espaço-Temporal , Taylorella equigenitalis/classificação , Animais , Austrália , Técnicas de Tipagem Bacteriana , Europa (Continente) , Infecções por Bactérias Gram-Negativas/epidemiologia , Tipagem de Sequências Multilocus , Filogenia , Estudos Retrospectivos , Estados Unidos
9.
mSphere ; 5(1)2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969478

RESUMO

So far, dromedary camels are the only known animal reservoir for Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV). Previous published serological studies showed that sera of Bactrian camels were all negative for MERS-CoV antibodies. However, a recent study revealed that direct inoculation of Bactrian camels intranasally with MERS-CoV can lead to infection with abundant virus shedding and seroconversion. In this study, we examined the presence of MERS-CoV antibodies in Bactrian and hybrid camels in Dubai, the United Arab Emirates (where dromedaries are also present), and Bactrian camels in Xinjiang, China (where dromedaries are absent). For the 29 serum samples from Bactrian camels in Dubai tested by the MERS-CoV spike (S) protein-based enzyme-linked immunosorbent assay (S-ELISA) and neutralization antibody test, 14 (48%) and 12 (41%), respectively, were positive for MERS-CoV antibodies. All the 12 serum samples that were positive with the neutralization antibody test were also positive for the S-ELISA. For the 11 sera from hybrid camels in Dubai tested with the S-ELISA and neutralization antibody test, 6 (55%) and 9 (82%), respectively, were positive for MERS-CoV antibodies. All the 6 serum samples that were positive for the S-ELISA were also positive with the neutralization antibody test. There was a strong correlation between the antibody levels detected by S-ELISA and neutralizing antibody titers, with a Spearman coefficient of 0.6262 (P < 0.0001; 95% confidence interval, 0.5062 to 0.7225). All 92 Bactrian camel serum samples from Xinjiang were negative for MERS-CoV antibodies tested using both S-ELISA and the neutralization antibody test. Bactrian and hybrid camels are potential sources of MERS-CoV infection.IMPORTANCE Since its first appearance in 2012, Middle East respiratory syndrome (MERS) has affected >25 countries, with >2,400 cases and an extremely high fatality rate of >30%. The total number of mortalities due to MERS is already greater than that due to severe acute respiratory syndrome. MERS coronavirus (MERS-CoV) has been confirmed to be the etiological agent. So far, dromedaries are the only known animal reservoir for MERS-CoV. Previously published serological studies showed that sera of Bactrian camels were all negative for MERS-CoV antibodies. In this study, we observed that 41% of the Bactrian camel sera and 55% of the hybrid camel sera from Dubai (where dromedaries are also present), but none of the sera from Bactrian camels in Xinjiang (where dromedaries are absent), were positive for MERS-CoV antibodies. Based on these results, we conclude that in addition to dromedaries, Bactrian and hybrid camels are also potential sources of MERS-CoV infection.


Assuntos
Anticorpos Antivirais/sangue , Camelus/virologia , Infecções por Coronavirus/veterinária , Reservatórios de Doenças/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Biomarcadores/sangue , China , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Ensaio de Imunoadsorção Enzimática , Emirados Árabes Unidos
10.
Viruses ; 11(12)2019 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817946

RESUMO

Peste-des-petits-ruminants virus (PPRV) causes a severe respiratory disease in small ruminants. The possible impact of different atypical host species in the spread and planed worldwide eradication of PPRV remains to be clarified. Recent transmission trials with the virulent PPRV lineage IV (LIV)-strain Kurdistan/2011 revealed that pigs and wild boar are possible sources of PPRV-infection. We therefore investigated the role of cattle, llamas, alpacas, and dromedary camels in transmission trials using the Kurdistan/2011 strain for intranasal infection and integrated a literature review for a proper evaluation of their host traits and role in PPRV-transmission. Cattle and camelids developed no clinical signs, no viremia, shed no or only low PPRV-RNA loads in swab samples and did not transmit any PPRV to the contact animals. The distribution of PPRV-RNA or antigen in lymphoid organs was similar in cattle and camelids although generally lower compared to suids and small ruminants. In the typical small ruminant hosts, the tissue tropism, pathogenesis and disease expression after PPRV-infection is associated with infection of immune and epithelial cells via SLAM and nectin-4 receptors, respectively. We therefore suggest a different pathogenesis in cattle and camelids and both as dead-end hosts for PPRV.


Assuntos
Camelus/virologia , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Peste dos Pequenos Ruminantes/virologia , Vírus da Peste dos Pequenos Ruminantes/fisiologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Biomarcadores , Biópsia , Bovinos , Feminino , Testes Hematológicos , Imuno-Histoquímica , Masculino , Peste dos Pequenos Ruminantes/sangue , Peste dos Pequenos Ruminantes/patologia
11.
Vet Ital ; 55(3): 261-267, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31599551

RESUMO

Six horses were challenged experimentally with a strain of Burkholderia pseudomallei isolated from a fatal case of the infection in a dromedary camel years earlier in the Emirate of Dubai. Three horses were inoculated subcutaneously and in 3 the bacterium was administered by the oral route. Four of the horses became serologically positive based on reactions to one or more of the OIE described tests for glanders. B. pseudomallei was re-isolated from the 4 serological positive horses. Only one of the subcutaneously infected horses, developed fever for 3 days. The white blood cell values and the neutrophil counts were also elevated. The study confirmed that existing serological test for diagnosing glanders cannot differentiate between glanders and melioidosis in horses.


Assuntos
Burkholderia pseudomallei/fisiologia , Testes Diagnósticos de Rotina/veterinária , Doenças dos Cavalos/diagnóstico , Melioidose/veterinária , Animais , Anticorpos Antibacterianos/sangue , Testes Diagnósticos de Rotina/instrumentação , Feminino , Mormo/diagnóstico , Doenças dos Cavalos/microbiologia , Cavalos , Masculino , Melioidose/diagnóstico , Melioidose/microbiologia , Emirados Árabes Unidos
12.
Viruses ; 11(9)2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31480604

RESUMO

Newcastle disease virus (NDV) causes morbidities and mortalities in wild and domestic birds globally. For humans, exposure to infected birds can cause conjunctivitis and influenza-like symptoms. NDV infections in mammals are rarely reported. In this study, using next-generation sequencing, an NDV was identified and isolated from Vero cells inoculated with the nasal swab of an aborted dromedary fetus in Dubai, during the time when an NDV outbreak occurred in a pigeon farm located in close proximity to the dairy camel farm where the mother of the aborted dromedary fetus resided, and there were a lot of pigeons in the camel farm. Genome analysis revealed that the structurally and functionally important features of other NDVs were also present in this dromedary NDV genome. Phylogenetic analysis based on the nucleotide sequences of fusion protein (F), hemagglutinin-neuraminidase protein (HN) and complete polyprotein showed that the virus belonged to sub-genotype VIg of class II NDV and is most closely related to pigeon NDVs in Egypt in the same year. The present study is the first that demonstrated isolation of NDV in dromedaries. Further study is warranted to investigate the relationship between NDV infection and abortion.


Assuntos
Feto Abortado/virologia , Camelus/virologia , Vírus da Doença de Newcastle/isolamento & purificação , Animais , Columbidae/virologia , Egito/epidemiologia , Genoma Viral/genética , Genótipo , Doença de Newcastle/epidemiologia , Doença de Newcastle/virologia , Vírus da Doença de Newcastle/classificação , Vírus da Doença de Newcastle/genética , Filogenia , Proteínas Virais/genética
13.
Emerg Microbes Infect ; 7(1): 209, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531999

RESUMO

Previous findings of Middle East Respiratory Syndrome coronavirus (MERS-CoV)-related viruses in bats, and the ability of Tylonycteris-BatCoV HKU4 spike protein to utilize MERS-CoV receptor, human dipeptidyl peptidase 4 hDPP4, suggest a bat ancestral origin of MERS-CoV. We developed 12 primary bat cell lines from seven bat species, including Tylonycteris pachypus, Pipistrellus abramus and Rhinolophus sinicus (hosts of Tylonycteris-BatCoV HKU4, Pipistrellus-BatCoV HKU5, and SARS-related-CoV respectively), and tested their susceptibilities to MERS-CoVs, SARS-CoV, and human coronavirus 229E (HCoV-229E). Five cell lines, including P. abramus and R. sinicus but not T. pachypus cells, were susceptible to human MERS-CoV EMC/2012. However, three tested camel MERS-CoV strains showed different infectivities, with only two strains capable of infecting three and one cell lines respectively. SARS-CoV can only replicate in R. sinicus cells, while HCoV-229E cannot replicate in any bat cells. Bat dipeptidyl peptidase 4 (DPP4) sequences were closely related to those of human and non-human primates but distinct from dromedary DPP4 sequence. Critical residues for binding to MERS-CoV spike protein were mostly conserved in bat DPP4. DPP4 was expressed in the five bat cells susceptible to MERS-CoV, with significantly higher mRNA expression levels than those in non-susceptible cells (P = 0.0174), supporting that DPP4 expression is critical for MERS-CoV infection in bats. However, overexpression of T. pachypus DPP4 failed to confer MERS-CoV susceptibility in T. pachypus cells, suggesting other cellular factors in determining viral replication. The broad cellular tropism of MERS-CoV should prompt further exploration of host diversity of related viruses to identify its ancestral origin.


Assuntos
Quirópteros/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Vírus da SARS/fisiologia , Replicação Viral , Animais , Camelus , Linhagem Celular , Células Cultivadas , Dipeptidil Peptidase 4/genética , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Primatas , Vírus da SARS/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Tropismo Viral , Ligação Viral
14.
Sci Rep ; 8(1): 14693, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279570

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease of livestock affecting animal production and trade throughout Asia and Africa. Understanding FMD virus (FMDV) global movements and evolution can help to reconstruct the disease spread between endemic regions and predict the risks of incursion into FMD-free countries. Global expansion of a single FMDV lineage is rare but can result in severe economic consequences. Using extensive sequence data we have reconstructed the global space-time transmission history of the O/ME-SA/Ind-2001 lineage (which normally circulates in the Indian sub-continent) providing evidence of at least 15 independent escapes during 2013-2017 that have led to outbreaks in North Africa, the Middle East, Southeast Asia, the Far East and the FMD-free islands of Mauritius. We demonstrated that sequence heterogeneity of this emerging FMDV lineage is accommodated within two co-evolving divergent sublineages and that recombination by exchange of capsid-coding sequences can impact upon the reconstructed evolutionary histories. Thus, we recommend that only sequences encoding the outer capsid proteins should be used for broad-scale phylogeographical reconstruction. These data emphasise the importance of the Indian subcontinent as a source of FMDV that can spread across large distances and illustrates the impact of FMDV genome recombination on FMDV molecular epidemiology.


Assuntos
Vírus da Febre Aftosa/genética , Febre Aftosa/epidemiologia , Pandemias/estatística & dados numéricos , África do Norte/epidemiologia , Animais , Ásia/epidemiologia , Proteínas do Capsídeo/genética , Evolução Molecular , Febre Aftosa/transmissão , Febre Aftosa/virologia , Genoma Viral/genética , Maurício/epidemiologia , Epidemiologia Molecular , Filogeografia , Recombinação Genética
15.
Int J Syst Evol Microbiol ; 68(11): 3627-3634, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30303475

RESUMO

Five bacterial strains, UAE-HKU57T, UAE-HKU58, UAE-HKU59, UAE-HKU60 and UAE-HKU61, were isolated in Dubai, UAE, from necrotic foot tissue samples of four dromedaries (Camelus dromedarius) and associated maggots (Wohrlfartia species). They were non-sporulating, Gram-negative, non-motile bacilli. They grew well under aerobic conditions at 37 °C, but not anaerobically. The pH range for growth was pH 7.0-9.0 (optimum, pH 7.5-8.0) and the strains could tolerate NaCl concentrations (w/v) up to 2 % (optimum, 0.5 %). They were catalase- and cytochrome oxidase-positive, but caseinase-, gelatinase- and urease-negative. Their phenotypic characters were distinguishable from other closely related species. Phylogenetic analyses of the almost-complete 16S rRNA gene and partial 23S rRNA gene, gyrB, groEL and recA sequences revealed that the five isolates were most closely related to undescribed Ignatzschineria strain F8392 and Ignatzschineria indica, but in most phylogenies clustered separately from these close relatives. Average nucleotide identity analysis showed that genomes of the five isolates (2.47-2.52 Mb, G+C content 41.71-41.86 mol%) were 98.00-99.97% similar to each other, but ≤87.18 % similar to other Ignatzschineriaspecies/strains. Low DNA relatedness between the five isolates to other Ignatzschineriaspecies/strains was also supported by Genome-to-Genome Distance Calculator analysis. The chemotaxonomic traits of the five strains were highly similar. They were non-susceptible (intermediate or resistant) to tetracycline and resistant to trimethoprim/sulphamethoxazole. The name Ignatzschineria cameli sp. nov. is proposed to accommodate these five strains, with strain UAE-HKU57T (=CCOS1165T=NBRC 113042T) as the type strain.


Assuntos
Camelus/microbiologia , Gammaproteobacteria/classificação , Larva/microbiologia , Necrose/microbiologia , Filogenia , Sarcofagídeos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Pé/microbiologia , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Genes Bacterianos , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química , Emirados Árabes Unidos
16.
J Virol ; 92(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29769348

RESUMO

The emergence of Middle East respiratory syndrome showed once again that coronaviruses (CoVs) in animals are potential source for epidemics in humans. To explore the diversity of deltacoronaviruses in animals in the Middle East, we tested fecal samples from 1,356 mammals and birds in Dubai, The United Arab Emirates. Four novel deltacoronaviruses were detected from eight birds of four species by reverse transcription-PCR (RT-PCR): FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails. Complete genome sequencing showed that FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAE-HKU29 belong to the same CoV species, suggesting recent interspecies transmission between falcons and their prey, houbara bustards and pigeons, possibly along the food chain. Western blotting detected specific anti-FalCoV UAE-HKU27 antibodies in 33 (75%) of 44 falcon serum samples, supporting genuine infection in falcons after virus acquisition. QuaCoV UAE-HKU30 belongs to the same CoV species as porcine coronavirus HKU15 (PorCoV HKU15) and sparrow coronavirus HKU17 (SpCoV HKU17), discovered previously from swine and tree sparrows, respectively, supporting avian-to-swine transmission. Recombination involving the spike protein is common among deltacoronaviruses, which may facilitate cross-species transmission. FalCoV UAE-HKU27, HouCoV UAE-HKU28, and PiCoV UAE-HKU29 originated from recombination between white-eye coronavirus HKU16 (WECoV HKU16) and magpie robin coronavirus HKU18 (MRCoV HKU18), QuaCoV UAE-HKU30 from recombination between PorCoV HKU15/SpCoV HKU17 and munia coronavirus HKU13 (MunCoV HKU13), and PorCoV HKU15 from recombination between SpCoV HKU17 and bulbul coronavirus HKU11 (BuCoV HKU11). Birds in the Middle East are hosts for diverse deltacoronaviruses with potential for interspecies transmission.IMPORTANCE During an attempt to explore the diversity of deltacoronaviruses among mammals and birds in Dubai, four novel deltacoronaviruses were detected in fecal samples from eight birds of four different species: FalCoV UAE-HKU27 from a falcon, HouCoV UAE-HKU28 from a houbara bustard, PiCoV UAE-HKU29 from a pigeon, and QuaCoV UAE-HKU30 from five quails. Genome analysis revealed evidence of recent interspecies transmission between falcons and their prey, houbara bustards and pigeons, possibly along the food chain, as well as avian-to-swine transmission. Recombination, which is known to occur frequently in some coronaviruses, was also common among these deltacoronaviruses and occurred predominantly at the spike region. Such recombination, involving the receptor binding protein, may contribute to the emergence of new viruses capable of infecting new hosts. Birds in the Middle East are hosts for diverse deltacoronaviruses with potential for interspecies transmission.


Assuntos
Doenças das Aves , Aves/virologia , Infecções por Coronaviridae , Coronavirus , Sequenciamento de Nucleotídeos em Larga Escala , Suínos/virologia , Animais , Doenças das Aves/genética , Doenças das Aves/transmissão , Infecções por Coronaviridae/genética , Infecções por Coronaviridae/transmissão , Infecções por Coronaviridae/veterinária , Coronavirus/classificação , Coronavirus/genética , Coronavirus/isolamento & purificação , Coronavirus/patogenicidade , Arábia Saudita
17.
Mycoses ; 61(8): 600-609, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29611232

RESUMO

Aspergillosis in falcons may be associated with high mortality and difficulties in clinical and laboratory diagnosis. We previously cloned an immunogenic protein, Afmp1p, in Aspergillus fumigatus and showed that anti-Afmp1p antibodies were present in human patients with A. fumigatus infections. In this study, we hypothesise that a similar Afmp1p-based enzyme-linked immunosorbent assay (ELISA) could be applied to serodiagnose falcon aspergillosis. A specific polyclonal antibody was first generated to detect falcon serum IgY. Horseradish peroxidase-conjugate of this antibody was then used to measure anti-Afmp1p antibodies in sera collected from falcons experimentally infected with A. fumigatus, and the performance of the Afmp1p-based ELISA was evaluated using sera from healthy falcons and falcons with documented A. fumigatus infections. All four experimentally infected falcons developed culture- and histology-proven invasive aspergillosis. Anti-Afmp1p antibodies were detected in their sera. For the Afmp1p-based ELISA, the mean ± SD OD450 nm using sera from 129 healthy falcons was 0.186 ± 0.073. Receiver operating characteristics curve analysis showed an absorbance cut-off value of 0.407. One negative serum gave an absorbance outside the normal range, giving a specificity of 99.2%. For the 12 sera from falcons with confirmed aspergillosis, nine gave absorbance values ≥ cut-off, giving a sensitivity of 75%. The Afmp1p-based ELISA is useful for serodiagnosis of falcons with aspergillosis.


Assuntos
Anticorpos Antifúngicos/sangue , Antígenos de Fungos/imunologia , Aspergilose/veterinária , Doenças das Aves/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , Falconiformes , Glicoproteínas de Membrana/imunologia , Testes Sorológicos/métodos , Animais , Aspergilose/diagnóstico , Curva ROC , Sensibilidade e Especificidade
18.
Rev. iberoam. micol ; 34(4): 229-32, oct.-dic. 2017. ilus
Artigo em Inglês | IBECS | ID: ibc-168718

RESUMO

Background. During the past decades there has been an increase in cryptococcal infections caused by the basidiomycetous yeast species Cryptococcus gattii sensu lato, among humans and animals that live in endemic regions in Australia, Europe and the Americas. Unlike human cryptococcosis, little epidemiological data are available about C. gattii sensu lato infections in horses. Case report. A fatal case of a disseminated C. gattii sensu lato infection in an 11-year-old Arabian gelding imported from South Africa into the United Arab Emitares is reported. Tissue samples were studied by conventional mycology procedures and the obtained cryptococcal isolate was molecularly characterized by mating-type determination, amplified fragment length polymorphism (AFLP) fingerprinting, and multi-locus sequence typing (MLST). Phylogenetic analysis was performed to investigate the geographic origin of the cryptococcal isolate. The isolate was identified as Cryptococcus deuterogattii (AFLP6/VGII), mating-type α. Phylogenetic analysis showed that it was closely related to another C. deuterogattii isolate from the Middle East. Conclusions. A second case of a C. deuterogattii infection in the Middle East is described. It is likely that the horse acquired the infection in the Middle East, as the isolate is closely related to that of a recent human case from that region (AU)


Antecedentes. Durante las dos últimas décadas, las infecciones criptocócicas causadas por el hongo levaduriforme basidiomiceto Cryptococcus gattii sensu lato se han incrementado entre los seres humanos y los animales que viven en regiones endémicas de Australia, Europa y América. A diferencia de la criptococosis humana, existen muy pocos datos epidemiológicos disponibles sobre las infecciones por C. gattii sensu lato en los caballos. Caso clínico. Se expone el caso de una criptococosis diseminada fatal por C. gattii sensu lato en un caballo árabe castrado de 11 años de edad, importado desde Sudáfrica a los Emiratos Árabes Unidos. Las muestras de tejido analizadas por métodos microbiológicos convencionales permitieron el aislamiento de un criptococo que fue posteriormente caracterizado por técnicas moleculares para la determinación del tipo sexual, la obtención del perfil AFLP (amplified fragment length polymorphism) o polimorfismo de tamaño de fragmentos amplificados, y la tipificación por secuenciación multilocus (multi-locus sequence typing [MLST]). Se llevó a cabo un análisis filogenético para investigar el origen geográfico del criptococo aislado. Mediante PCR y AFLP el aislamiento fue identificado como Cryptococcus deuterogattii (AFLP6/VGII) y tipo sexual α. El análisis filogenético mostró que el aislamiento se encuentra muy próximo a otro único aislamiento de C. deuterogattii de Oriente Medio. Conclusiones. Este es el segundo caso descrito de infección por C. deuterogattii en Oriente Medio. Parece que el caballo adquirió la infección en aquella región, ya que el aislamiento muestra una relación muy próxima con otro de un caso reciente en un ser humano de esa región (AU)


Assuntos
Animais , Cryptococcus/patogenicidade , Criptococose/microbiologia , Fungemia/diagnóstico , Doenças dos Cavalos/microbiologia , Anfotericina B/uso terapêutico , Fluconazol/uso terapêutico , Tipagem de Sequências Multilocus/métodos
19.
Sci Rep ; 7(1): 8390, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827559

RESUMO

Broadly neutralizing antibodies (bnAbs) against HIV-1 protect from infection and reduce viral load upon therapeutic applications. However no vaccine was able so far to induce bnAbs demanding their expensive biotechnological production. For clinical applications, nanobodies (VHH) derived from heavy chain only antibodies from Camelidae, may be better suited due to their small size, high solubility/stability and extensive homology to human VH3 genes. Here we selected broadly neutralizing nanobodies by phage display after immunization of dromedaries with different soluble trimeric envelope proteins derived from HIV-1 subtype C. We identified 25 distinct VHH families binding trimeric Env, of which 6 neutralized heterologous primary isolates of various HIV-1 subtypes in a standardized in vitro neutralization assay. The complementary neutralization pattern of two selected VHHs in combination covers 19 out of 21 HIV-1 strains from a standardized panel of epidemiologically relevant HIV-1 subtypes. The CD4 binding site was preferentially targeted by the broadly neutralizing VHHs as determined by competition ELISAs and 3D models of VHH-Env complexes derived from negative stain electron microscopy. The nanobodies identified here are excellent candidates for further preclinical/clinical development for prophylactic and therapeutic applications due to their potency and their complementary neutralization patterns covering the majority of epidemiologically relevant HIV-1 subtypes.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Anticorpos de Domínio Único/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Camelus , Técnicas de Visualização da Superfície Celular , Genótipo , Anticorpos Anti-HIV/química , Anticorpos Anti-HIV/isolamento & purificação , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/efeitos dos fármacos , HIV-1/genética , Humanos , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/isolamento & purificação , Produtos do Gene env do Vírus da Imunodeficiência Humana/química
20.
Rev Iberoam Micol ; 34(4): 229-232, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28595777

RESUMO

BACKGROUND: During the past decades there has been an increase in cryptococcal infections caused by the basidiomycetous yeast species Cryptococcus gattii sensu lato, among humans and animals that live in endemic regions in Australia, Europe and the Americas. Unlike human cryptococcosis, little epidemiological data are available about C. gattii sensu lato infections in horses. CASE REPORT: A fatal case of a disseminated C. gattii sensu lato infection in an 11-year-old Arabian gelding imported from South Africa into the United Arab Emitares is reported. Tissue samples were studied by conventional mycology procedures and the obtained cryptococcal isolate was molecularly characterized by mating-type determination, amplified fragment length polymorphism (AFLP) fingerprinting, and multi-locus sequence typing (MLST). Phylogenetic analysis was performed to investigate the geographic origin of the cryptococcal isolate. The isolate was identified as Cryptococcus deuterogattii (AFLP6/VGII), mating-type α. Phylogenetic analysis showed that it was closely related to another C. deuterogattii isolate from the Middle East. CONCLUSIONS: A second case of a C. deuterogattii infection in the Middle East is described. It is likely that the horse acquired the infection in the Middle East, as the isolate is closely related to that of a recent human case from that region.


Assuntos
Criptococose/veterinária , Cryptococcus gattii/isolamento & purificação , Doenças dos Cavalos/microbiologia , Cavalos/microbiologia , Animais , Infecções Bacterianas/veterinária , Coinfecção , Criptococose/epidemiologia , Criptococose/microbiologia , Cryptococcus gattii/classificação , Cryptococcus gattii/genética , Evolução Fatal , Genótipo , Humanos , Pulmão/microbiologia , Masculino , Técnicas de Tipagem Micológica , Filogenia , Emirados Árabes Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...