Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtros adicionais

Intervalo de ano
Nat Commun ; 10(1): 1788, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996276


Three Ebolavirus genus viruses cause lethal disease and lack targeted therapeutics: Ebola virus, Sudan virus and Bundibugyo virus. Monoclonal antibody (mAb) cocktails against the surface glycoprotein (GP) present a potential therapeutic strategy. Here we report two crystal structures of the antibody BDBV223, alone and complexed with its GP2 stalk epitope, an interesting site for therapeutic/vaccine design due to its high sequence conservation among ebolaviruses. BDBV223, identified in a human survivor of Bundibugyo virus disease, neutralizes both Bundibugyo virus and Ebola virus, but not Sudan virus. Importantly, the structure suggests that BDBV223 binding interferes with both the trimeric bundle assembly of GP and the viral membrane by stabilizing a conformation in which the monomers are separated by GP lifting or bending. Targeted mutagenesis of BDBV223 to enhance SUDV GP recognition indicates that additional determinants of antibody binding likely lie outside the visualized interactions, and perhaps involve quaternary assembly or membrane-interacting regions.

Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Ebolavirus/efeitos dos fármacos , Doença pelo Vírus Ebola/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/química , Anticorpos Antivirais/isolamento & purificação , Anticorpos Antivirais/metabolismo , Reações Cruzadas/imunologia , Cristalografia por Raios X , Ebolavirus/imunologia , Epitopos/química , Epitopos/imunologia , Doença pelo Vírus Ebola/sangue , Doença pelo Vírus Ebola/virologia , Humanos , Hibridomas , Mutagênese , Sobreviventes , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo
Curr Opin Virol ; 34: 140-148, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30884329


Filoviruses are the causative agents of highly lethal outbreaks in sub-Saharan Africa. Although an experimental vaccine and several therapeutics are being deployed in the Democratic Republic of Congo to combat the ongoing Ebola virus outbreak, these therapies are specific for only one filovirus species. There is currently significant interest in developing broadly reactive monoclonal antibodies (mAbs) with utility against the variety of ebolaviruses that may emerge. Thus far, the primary target of these mAbs has been the viral spike glycoprotein (GP). Here we present an overview of GP-targeted antibodies that exhibit broad reactivity and the structural characteristics that could confer this cross-reactivity. We also discuss how these structural features could be leveraged to design vaccine antigens that elicit cross-reactive antibodies.

Nat Struct Mol Biol ; 26(3): 204-212, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30833785


The structural features that govern broad-spectrum activity of broadly neutralizing anti-ebolavirus antibodies (Abs) outside of the internal fusion loop epitope are currently unknown. Here we describe the structure of a broadly neutralizing human monoclonal Ab (mAb), ADI-15946, which was identified in a human survivor of the 2013-2016 outbreak. The crystal structure of ADI-15946 in complex with cleaved Ebola virus glycoprotein (EBOV GPCL) reveals that binding of the mAb structurally mimics the conserved interaction between the EBOV GP core and its glycan cap ß17-ß18 loop to inhibit infection. Both endosomal proteolysis of EBOV GP and binding of mAb FVM09 displace this loop, thereby increasing exposure of ADI-15946's conserved epitope and enhancing neutralization. Our work also mapped the paratope of ADI-15946, thereby explaining reduced activity against Sudan virus, which enabled rational, structure-guided engineering to enhance binding and neutralization of Sudan virus while retaining the parental activity against EBOV and Bundibugyo virus.

MBio ; 9(5)2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206174


Only one naturally occurring human antibody has been described thus far that is capable of potently neutralizing all five ebolaviruses. Here we present two crystal structures of this rare, pan-ebolavirus neutralizing human antibody in complex with Ebola virus and Bundibugyo virus glycoproteins (GPs), respectively. The structures delineate the key protein and glycan contacts for binding that are conserved across the ebolaviruses, explain the antibody's unique broad specificity and neutralization activity, and reveal the likely mechanism behind a known escape mutation in the fusion loop region of GP2. We found that the epitope of this antibody, ADI-15878, extends along the hydrophobic paddle of the fusion loop and then dips down into a highly conserved pocket beneath the N-terminal tail of GP2, a mode of recognition unlike any other antibody elicited against Ebola virus, and likely critical for its broad activity. The fold of Bundibugyo virus glycoprotein, not previously visualized, is similar to the fold of Ebola virus GP, and ADI-15878 binds to each virus's GP with a similar strategy and angle of attack. These findings will be useful in deployment of this antibody as a broad-spectrum therapeutic and in the design of immunogens that elicit the desired broadly neutralizing immune response against all members of the ebolavirus genus and filovirus family.IMPORTANCE There are five different members of the Ebolavirus genus. Provision of vaccines and treatments able to protect against any of the five ebolaviruses is an important goal of public health. Antibodies are a desired result of vaccines and can be delivered directly as therapeutics. Most antibodies, however, are effective against only one or two, not all, of these pathogens. Only one human antibody has been thus far described to neutralize all five ebolaviruses, antibody ADI-15878. Here we describe the molecular structure of ADI-15878 bound to the relevant target proteins of Ebola virus and Bundibugyo virus. We explain how it achieves its rare breadth of activity and propose strategies to design improved vaccines capable of eliciting more antibodies like ADI-15878.

Curr Opin Immunol ; 53: 196-202, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29940415


Filoviruses, including ebolaviruses and marburgviruses, are the causative agents of highly lethal disease outbreaks. The 2013-2016 Ebola virus outbreak was responsible for >28000 infections and >11000 deaths. Although there are currently no licensed vaccines or therapeutics for any filovirus-induced disease, monoclonal antibodies (mAbs) are among the most promising options for therapeutic development. Hundreds of mAbs have been isolated from human survivors of filovirus infections that target the viral spike glycoprotein (GP). The binding, neutralization, and cross-reactivity of many of these mAbs has been determined. Several mAbs have been characterized structurally, and this information has been crucial for strategizing therapeutic and vaccine design. Here we present an overview of the structural features of the neutralizing/protective epitopes on filovirus glycoproteins.

Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1764-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914986


The X-ray crystal structure of the Lymphocytic choriomeningitis virus nucleoprotein C-terminal immunosuppressive domain (LCMV NPΔ340) was determined to 2.0 Šresolution. The structure indicates that LCMV NPΔ340, like the other structurally characterized arenaviral nucleoproteins, adopts the fold of an exonuclease. This structure provides a crucial three-dimensional template for functional exploration of the replication and immunosuppression of this prototypic arenavirus.

Tolerância Imunológica , Vírus da Coriomeningite Linfocítica/metabolismo , Proteínas Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Vírus da Coriomeningite Linfocítica/fisiologia , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Proteínas Virais/química