Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 580(7802): 245-251, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32269342

RESUMO

Radiologic screening of high-risk adults reduces lung-cancer-related mortality1,2; however, a small minority of eligible individuals undergo such screening in the United States3,4. The availability of blood-based tests could increase screening uptake. Here we introduce improvements to cancer personalized profiling by deep sequencing (CAPP-Seq)5, a method for the analysis of circulating tumour DNA (ctDNA), to better facilitate screening applications. We show that, although levels are very low in early-stage lung cancers, ctDNA is present prior to treatment in most patients and its presence is strongly prognostic. We also find that the majority of somatic mutations in the cell-free DNA (cfDNA) of patients with lung cancer and of risk-matched controls reflect clonal haematopoiesis and are non-recurrent. Compared with tumour-derived mutations, clonal haematopoiesis mutations occur on longer cfDNA fragments and lack mutational signatures that are associated with tobacco smoking. Integrating these findings with other molecular features, we develop and prospectively validate a machine-learning method termed 'lung cancer likelihood in plasma' (Lung-CLiP), which can robustly discriminate early-stage lung cancer patients from risk-matched controls. This approach achieves performance similar to that of tumour-informed ctDNA detection and enables tuning of assay specificity in order to facilitate distinct clinical applications. Our findings establish the potential of cfDNA for lung cancer screening and highlight the importance of risk-matching cases and controls in cfDNA-based screening studies.

2.
Cell ; 181(2): 236-249, 2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32302568

RESUMO

Crucial transitions in cancer-including tumor initiation, local expansion, metastasis, and therapeutic resistance-involve complex interactions between cells within the dynamic tumor ecosystem. Transformative single-cell genomics technologies and spatial multiplex in situ methods now provide an opportunity to interrogate this complexity at unprecedented resolution. The Human Tumor Atlas Network (HTAN), part of the National Cancer Institute (NCI) Cancer Moonshot Initiative, will establish a clinical, experimental, computational, and organizational framework to generate informative and accessible three-dimensional atlases of cancer transitions for a diverse set of tumor types. This effort complements both ongoing efforts to map healthy organs and previous large-scale cancer genomics approaches focused on bulk sequencing at a single point in time. Generating single-cell, multiparametric, longitudinal atlases and integrating them with clinical outcomes should help identify novel predictive biomarkers and features as well as therapeutically relevant cell types, cell states, and cellular interactions across transitions. The resulting tumor atlases should have a profound impact on our understanding of cancer biology and have the potential to improve cancer detection, prevention, and therapeutic discovery for better precision-medicine treatments of cancer patients and those at risk for cancer.

3.
Mod Pathol ; 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123305

RESUMO

Angiosarcoma (AS) is the most frequent primary sarcoma of the breast but nevertheless remains uncommon, accounting for <0.05% of breast malignancies. Secondary mammary AS arise following radiation therapy for breast cancer, in contrast to primary AS which occur sporadically. Essentially all show aggressive clinical behavior independent of histologic grade and most are treated by mastectomy. MYC amplification is frequently identified in radiation-induced AS but only rarely in primary mammary AS (PMAS). As a heterogeneous group, AS from various anatomic sites have been shown to harbor recurrent alterations in TP53, MAP kinase pathway genes, and genes involved in angiogenic signaling including KDR (VEGFR2) and PTPRB. In part due to its rarity, the pathogenesis of PMAS has not been fully characterized. In this study, we examined the clinical, pathologic, and genomic features of ten cases of PMAS, including one patient with bilateral disease. Recurrent genomic alterations were identified in KDR (70%), PIK3CA/PIK3R1 (70%), and PTPRB (30%), each at higher frequencies than reported in AS across all sites. Six tumors harbored a KDR p.T771R hotspot mutation, and all seven KDR-mutant cases showed evidence suggestive of biallelism (four with loss of heterozygosity and three with two aberrations). Of the seven tumors with PI3K alterations, six harbored pathogenic mutations other than in the canonical PIK3CA residues which are most frequent in breast cancer. Three AS were hypermutated (≥10 mutations/megabase (Mb)); hypermutation was seen concurrent with KDR or PIK3CA mutations. The patient with bilateral disease demonstrated shared alterations, indicative of contralateral metastasis. No MYC or TP53 aberrations were detected in this series. Immunohistochemistry for VEGFR2 was unable to discriminate between KDR-mutant tumors and benign vascular lesions of the breast. These findings highlight the underrecognized frequency of KDR and PIK3CA mutation in PMAS, and a significant subset with hypermutation, suggesting a pathogenesis distinct from other AS.

4.
Sci Immunol ; 5(45)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139586

RESUMO

B cells in human food allergy have been studied predominantly in the blood. Little is known about IgE+ B cells or plasma cells in tissues exposed to dietary antigens. We characterized IgE+ clones in blood, stomach, duodenum, and esophagus of 19 peanut-allergic patients, using high-throughput DNA sequencing. IgE+ cells in allergic patients are enriched in stomach and duodenum, and have a plasma cell phenotype. Clonally related IgE+ and non-IgE-expressing cell frequencies in tissues suggest local isotype switching, including transitions between IgA and IgE isotypes. Highly similar antibody sequences specific for peanut allergen Ara h 2 are shared between patients, indicating that common immunoglobulin genetic rearrangements may contribute to pathogenesis. These data define the gastrointestinal tract as a reservoir of IgE+ B lineage cells in food allergy.

5.
Arch Pathol Lab Med ; 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101450

RESUMO

CONTEXT.­: Accurate HER2 testing in breast cancer is crucial for appropriate precision therapy. HER2 testing is most commonly accomplished by a combination of immunohistochemistry and in situ hybridization techniques, as gene amplification is closely tied to protein overexpression. During the last 5+ years, brightfield dual in situ hybridization (DISH) has replaced fluorescence methods (fluorescence in situ hybridization [FISH]) in some laboratories. OBJECTIVE.­: To analyze routine HER2 DISH performance in the field. DESIGN.­: We reviewed our experience with HER2 DISH performed at outside laboratories and referred for patient care. RESULTS.­: Of 273 identified retrospective DISH results, 55 had repeated FISH testing at our institution; 7 (13%) were discordant. Additional cases had technical flaws hampering appropriate scoring. In 23 cases (42%), HER2 DISH was performed without immunohistochemistry. Slide review of a prospective cohort of 42 consecutive DISH cases revealed 14 (33%) with technical or interpretative limitations potentially jeopardizing results. Commonly identified problems include lack of or weak signals in most tumor cells, and silver precipitate or red signals outside of nuclei, resulting in false-negative or false-positive interpretations, respectively. Further, 44% (24 of 55) of DISH reports lacked complete data, specifically average HER2 signals/cell. CONCLUSIONS.­: While HER2 DISH can be an efficient and effective alternative to FISH, we illustrate pitfalls and reinforce that careful attention to slide quality and technical parameters are critically important. HER2 DISH cotesting with immunohistochemistry could help minimize false-negative or false-positive HER2 results.

6.
Am J Surg Pathol ; 44(5): 665-672, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31895100

RESUMO

Odontogenic tumors show considerable morphologic heterogeneity and at times the diagnosis can be challenging. Ameloblastoma, the most common odontogenic tumor, can have morphologic similarity to some salivary gland tumors and therefore we sought to identify biomarkers that might aid in the diagnosis by performing transcriptome wide gene expression profiling of 80 odontogenic and salivary gland neoplasms. These data identified the FOXP1/SOX10 expression profile as characteristic of many odontogenic tumors including ameloblastoma but largely absent in salivary gland tumors. We then assessed 173 salivary gland tumors and 108 odontogenic tumors by immunohistochemistry for FOXP1 and SOX10 expression and found that 34/35 (97%) cases of ameloblastomas were diffusely positive for FOXP1 but completely negative for SOX10. None of the basaloid salivary neoplasms (basal cell adenoma, adenoid cystic carcinoma, polymorphous adenocarcinoma, and myoepitheloma) demonstrated FOXP1/SOX10 expression pattern. Taken together, the results of this study suggest that the FOXP1/SOX10 immunophenotype is common in odontogenic tumors including ameloblastoma and might be useful distinguishing these from similar appearing basaloid salivary gland tumors.

8.
Genome Res ; 29(11): 1816-1825, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31519740

RESUMO

RNA sequencing (RNA-seq) is a sensitive and accurate method for quantifying gene expression. Small samples or those whose RNA is degraded, such as formalin-fixed paraffin-embedded (FFPE) tissue, remain challenging to study with nonspecialized RNA-seq protocols. Here, we present a new method, Smart-3SEQ, that accurately quantifies transcript abundance even with small amounts of total RNA and effectively characterizes small samples extracted by laser-capture microdissection (LCM) from FFPE tissue. We also obtain distinct biological profiles from FFPE single cells, which have been impossible to study with previous RNA-seq protocols, and we use these data to identify possible new macrophage phenotypes associated with the tumor microenvironment. We propose Smart-3SEQ as a highly cost-effective method to enable large gene expression profiling experiments unconstrained by sample size and tissue availability. In particular, Smart-3SEQ's compatibility with FFPE tissue unlocks an enormous number of archived clinical samples; combined with LCM it allows unprecedented studies of small cell populations and single cells isolated by their in situ context.

9.
Breast Cancer Res Treat ; 178(2): 307-316, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31420779

RESUMO

PURPOSE: The detection rate of breast ductal carcinoma in situ (DCIS) has increased significantly, raising the concern that DCIS is overdiagnosed and overtreated. Therefore, there is an unmet clinical need to better predict the risk of progression among DCIS patients. Our hypothesis is that by combining molecular signatures with clinicopathologic features, we can elucidate the biology of breast cancer progression, and risk-stratify patients with DCIS. METHODS: Targeted exon sequencing with a custom panel of 223 genes/regions was performed for 125 DCIS cases. Among them, 60 were from cases having concurrent or subsequent invasive breast cancer (IBC) (DCIS + IBC group), and 65 from cases with no IBC development over a median follow-up of 13 years (DCIS-only group). Copy number alterations in chromosome 1q32, 8q24, and 11q13 were analyzed using fluorescence in situ hybridization (FISH). Multivariable logistic regression models were fit to the outcome of DCIS progression to IBC as functions of demographic and clinical features. RESULTS: We observed recurrent variants of known IBC-related mutations, and the most commonly mutated genes in DCIS were PIK3CA (34.4%) and TP53 (18.4%). There was an inverse association between PIK3CA kinase domain mutations and progression (Odds Ratio [OR] 10.2, p < 0.05). Copy number variations in 1q32 and 8q24 were associated with progression (OR 9.3 and 46, respectively; both p < 0.05). CONCLUSIONS: PIK3CA kinase domain mutations and the absence of copy number gains in DCIS are protective against progression to IBC. These results may guide efforts to distinguish low-risk from high-risk DCIS.


Assuntos
Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Estudo de Associação Genômica Ampla , Genômica , Idoso , Idoso de 80 Anos ou mais , Carcinoma Ductal de Mama/terapia , Variações do Número de Cópias de DNA , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Humanos , Hibridização in Situ Fluorescente , Pessoa de Meia-Idade , Metástase Neoplásica , Estadiamento de Neoplasias , Carga Tumoral
10.
Sci Adv ; 5(8): eaaw6171, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31457089

RESUMO

In tissues, cells reside in confining microenvironments, which may mechanically restrict the ability of a cell to double in size as it prepares to divide. How confinement affects cell cycle progression remains unclear. We show that cells progressed through the cell cycle and proliferated when cultured in hydrogels exhibiting fast stress relaxation but were mostly arrested in the G0/G1 phase of the cell cycle when cultured in hydrogels that exhibit slow stress relaxation. In fast-relaxing gels, activity of stretch-activated channels (SACs), including TRPV4, promotes activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, which in turn drives cytoplasmic localization of the cell cycle inhibitor p27Kip1, thereby allowing S phase entry and proliferation. Cell growth during G1 activated the TRPV4-PI3K/Akt-p27Kip1 signaling axis, but growth is inhibited in the confining slow-relaxing hydrogels. Thus, in confining microenvironments, cells sense when growth is sufficient for division to proceed through a growth-responsive signaling axis mediated by SACs.

11.
JCI Insight ; 52019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31094703

RESUMO

Benign prostatic hyperplasia (BPH) is the most common cause of lower urinary tract symptoms in men. Current treatments target prostate physiology rather than BPH pathophysiology and are only partially effective. Here, we applied next-generation sequencing to gain new insight into BPH. By RNAseq, we uncovered transcriptional heterogeneity among BPH cases, where a 65-gene BPH stromal signature correlated with symptom severity. Stromal signaling molecules BMP5 and CXCL13 were enriched in BPH while estrogen regulated pathways were depleted. Notably, BMP5 addition to cultured prostatic myofibroblasts altered their expression profile towards a BPH profile that included the BPH stromal signature. RNAseq also suggested an altered cellular milieu in BPH, which we verified by immunohistochemistry and single-cell RNAseq. In particular, BPH tissues exhibited enrichment of myofibroblast subsets, whilst depletion of neuroendocrine cells and an estrogen receptor (ESR1)-positive fibroblast cell type residing near epithelium. By whole-exome sequencing, we uncovered somatic single-nucleotide variants (SNVs) in BPH, of uncertain pathogenic significance but indicative of clonal cell expansions. Thus, genomic characterization of BPH has identified a clinically-relevant stromal signature and new candidate disease pathways (including a likely role for BMP5 signaling), and reveals BPH to be not merely a hyperplasia, but rather a fundamental re-landscaping of cell types.

12.
Nat Commun ; 10(1): 1848, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015465

RESUMO

Increased tissue stiffness is a driver of breast cancer progression. The transcriptional regulator YAP is considered a universal mechanotransducer, based largely on 2D culture studies. However, the role of YAP during in vivo breast cancer remains unclear. Here, we find that mechanotransduction occurs independently of YAP in breast cancer patient samples and mechanically tunable 3D cultures. Mechanistically, the lack of YAP activity in 3D culture and in vivo is associated with the absence of stress fibers and an order of magnitude decrease in nuclear cross-sectional area relative to 2D culture. This work highlights the context-dependent role of YAP in mechanotransduction, and establishes that YAP does not mediate mechanotransduction in breast cancer.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Matriz Extracelular/patologia , Mecanotransdução Celular , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Mama/patologia , Densidade da Mama , Técnicas de Cultura de Células/métodos , Linhagem Celular Tumoral , Progressão da Doença , Matriz Extracelular/metabolismo , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Invasividade Neoplásica/patologia , Fosfoproteínas/genética , Fatores de Transcrição
13.
Clin Lung Cancer ; 20(3): e356-e361, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30773448

RESUMO

INTRODUCTION: Thymic epithelial tumors (TET) are rare malignancies with a paucity of data on biology and therapeutics. Galectin-1 is a member of the ß-galactoside binding protein family and has been shown to mediate tumor growth via modulation of immune cell function. This study examined galectin-1 expression in TET. PATIENTS AND METHODS: A tissue microarray of 68 patients with TET and 8 benign thymus controls were stained for galectin-1 expression and scored by a pathologist blinded to patient clinical and pathologic data. Galectin-1 expression +1 or greater staining intensity was considered positive. Clinical and pathologic data were abstracted from institutional databases. Expression of galectin-1 in thymic tumor was compared to benign thymus controls and correlated with pertinent clinical and pathologic data. RESULTS: Galectin-1 expression was higher in TET compared to benign thymus controls (65% vs. 0%). No significant association between galectin-1 expression and the development of recurrent disease, paraneoplastic syndromes, or overall survival was noted. CONCLUSION: Galectin-1 is overexpressed in the majority of TET. Detection of galectin-1 may differentiate benign from neoplastic thymic processes. Additional studies are needed to assess the role of galectin-1 in the development of TET.

14.
Oncogenesis ; 8(2): 11, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30741938

RESUMO

Canine acanthomatous ameloblastomas (CAA), analogs of human ameloblastoma, are oral tumors of odontogenic origin for which the genetic drivers have remained undefined. By whole-exome sequencing, we have now discovered recurrent HRAS and BRAF activating mutations, respectively, in 63% and 8% of CAA. Notably, cell lines derived from CAA with HRAS mutation exhibit marked sensitivity to MAP kinase (MAPK) pathway inhibitors, which constrain cell proliferation and drive ameloblast differentiation. Our findings newly identify a large-animal spontaneous cancer model to study the progression and treatment of RAS-driven cancer. More broadly, our study highlights the translational potential of canine cancer genome sequencing to benefit both humans and their companion animals.

15.
Am J Surg Pathol ; 43(4): 489-496, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30520817

RESUMO

The spectrum of tumors arising in the salivary glands is wide and has recently been shown to harbor a network of tumor-specific fusion genes. Acinic cell carcinoma (AciCC) is one of the more frequently encountered types of salivary gland carcinoma, but it has remained a genetic orphan until recently when a fusion between the HTN3 and MSANTD3 genes was described in one case. Neither of these 2 genes is known to be implicated in any other malignancy. This study was undertaken to investigate whether the HTN3-MSANTD3 fusion is a recurrent genetic event in AciCC and whether it is a characteristic of one of its histological variants. Of the 273 AciCCs screened, 9 cases showed rearrangement of MSANTD3 by break-apart fluorescence in situ hybridization, 2 had 1 to 2 extra signals, and 1 had gain, giving a total of 4.4% with MSANTD3 aberrations. In 6 of 7 available cases with MSANTD3 rearrangement, the HTN3-MSANTD3 fusion transcript was demonstrated with real-time polymerase chain reaction. Histologically, all fusion-positive cases were predominantly composed of serous tumor cells growing in solid sheets, with serous tumor cells expressing DOG-1 and the intercalated duct-like cell component being CK7 positive and S-100 positive in 6/9 cases. All but one case arose in the parotid gland, and none of the patients experienced a recurrence during follow-up. In contrast, the case with MSANTD3 gain metastasized to the cervical lymph nodes and lungs. In conclusion, we find the HTN3-MSANTD3 gene fusion to be a recurrent event in AciCC with prominent serous differentiation and an indolent clinical course.


Assuntos
Carcinoma de Células Acinares/genética , Carcinoma de Células Acinares/patologia , Proteínas de Ligação a DNA/genética , Histatinas/genética , Fusão Oncogênica , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
16.
Nat Commun ; 9(1): 4144, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297715

RESUMO

Studies of cancer cell migration have found two modes: one that is protease-independent, requiring micron-sized pores or channels for cells to squeeze through, and one that is protease-dependent, relevant for confining nanoporous matrices such as basement membranes (BMs). However, many extracellular matrices exhibit viscoelasticity and mechanical plasticity, irreversibly deforming in response to force, so that pore size may be malleable. Here we report the impact of matrix plasticity on migration. We develop nanoporous and BM ligand-presenting interpenetrating network (IPN) hydrogels in which plasticity could be modulated independent of stiffness. Strikingly, cells in high plasticity IPNs carry out protease-independent migration through the IPNs. Mechanistically, cells in high plasticity IPNs extend invadopodia protrusions to mechanically and plastically open up micron-sized channels and then migrate through them. These findings uncover a new mode of protease-independent migration, in which cells can migrate through confining matrix if it exhibits sufficient mechanical plasticity.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Matriz Extracelular/metabolismo , Hidrogéis/metabolismo , Microambiente Tumoral , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/química , Feminino , Humanos , Hidrogéis/química , Fenômenos Mecânicos , Camundongos Nus , Transplante Heterólogo
17.
Cancer Res ; 78(13): 3445-3457, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760045

RESUMO

Metabolic reprogramming of the tumor microenvironment is recognized as a cancer hallmark. To identify new molecular processes associated with tumor metabolism, we analyzed the transcriptome of bulk and flow-sorted human primary non-small cell lung cancer (NSCLC) together with 18FDG-PET scans, which provide a clinical measure of glucose uptake. Tumors with higher glucose uptake were functionally enriched for molecular processes associated with invasion in adenocarcinoma and cell growth in squamous cell carcinoma (SCC). Next, we identified genes correlated to glucose uptake that were predominately overexpressed in a single cell-type comprising the tumor microenvironment. For SCC, most of these genes were expressed by malignant cells, whereas in adenocarcinoma, they were predominately expressed by stromal cells, particularly cancer-associated fibroblasts (CAF). Among these adenocarcinoma genes correlated to glucose uptake, we focused on glutamine-fructose-6-phosphate transaminase 2 (GFPT2), which codes for the glutamine-fructose-6-phosphate aminotransferase 2 (GFAT2), a rate-limiting enzyme of the hexosamine biosynthesis pathway (HBP), which is responsible for glycosylation. GFPT2 was predictive of glucose uptake independent of GLUT1, the primary glucose transporter, and was prognostically significant at both gene and protein level. We confirmed that normal fibroblasts transformed to CAF-like cells, following TGFß treatment, upregulated HBP genes, including GFPT2, with less change in genes driving glycolysis, pentose phosphate pathway, and TCA cycle. Our work provides new evidence of histology-specific tumor stromal properties associated with glucose uptake in NSCLC and identifies GFPT2 as a critical regulator of tumor metabolic reprogramming in adenocarcinoma.Significance: These findings implicate the hexosamine biosynthesis pathway as a potential new therapeutic target in lung adenocarcinoma. Cancer Res; 78(13); 3445-57. ©2018 AACR.


Assuntos
Adenocarcinoma de Pulmão/patologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/mortalidade , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Feminino , Fluordesoxiglucose F18/administração & dosagem , Seguimentos , Perfilação da Expressão Gênica , Transportador de Glucose Tipo 1/metabolismo , Glicólise , Glicosilação , Hexosaminas/biossíntese , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/mortalidade , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/diagnóstico por imagem , Invasividade Neoplásica/patologia , Tomografia por Emissão de Pósitrons , Prognóstico , Análise de Sobrevida , Microambiente Tumoral
18.
Clin Cancer Res ; 24(12): 2851-2858, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29581131

RESUMO

Purpose: Tumor-infiltrating lymphocytes (TIL) in pretreatment biopsies are associated with improved survival in triple-negative breast cancer (TNBC). We investigated whether higher peripheral lymphocyte counts are associated with lower breast cancer-specific mortality (BCM) and overall mortality (OM) in TNBC.Experimental Design: Data on treatments and diagnostic tests from electronic medical records of two health care systems were linked with demographic, clinical, pathologic, and mortality data from the California Cancer Registry. Multivariable regression models adjusted for age, race/ethnicity, socioeconomic status, cancer stage, grade, neoadjuvant/adjuvant chemotherapy use, radiotherapy use, and germline BRCA1/2 mutations were used to evaluate associations between absolute lymphocyte count (ALC), BCM, and OM. For a subgroup with TIL data available, we explored the relationship between TILs and peripheral lymphocyte counts.Results: A total of 1,463 stage I-III TNBC patients were diagnosed from 2000 to 2014; 1,113 (76%) received neoadjuvant/adjuvant chemotherapy within 1 year of diagnosis. Of 759 patients with available ALC data, 481 (63.4%) were ever lymphopenic (minimum ALC <1.0 K/µL). On multivariable analysis, higher minimum ALC, but not absolute neutrophil count, predicted lower OM [HR = 0.23; 95% confidence interval (CI), 0.16-0.35] and BCM (HR = 0.19; CI, 0.11-0.34). Five-year probability of BCM was 15% for patients who were ever lymphopenic versus 4% for those who were not. An exploratory analysis (n = 70) showed a significant association between TILs and higher peripheral lymphocyte counts during neoadjuvant chemotherapy.Conclusions: Higher peripheral lymphocyte counts predicted lower mortality from early-stage, potentially curable TNBC, suggesting that immune function may enhance the effectiveness of early TNBC treatment. Clin Cancer Res; 24(12); 2851-8. ©2018 AACR.


Assuntos
Contagem de Linfócitos , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/mortalidade , Adulto , Idoso , Biomarcadores , Biomarcadores Tumorais , California/epidemiologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/patologia , Pessoa de Meia-Idade , Mortalidade , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , Sistema de Registros , Programa de SEER , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/terapia
19.
Breast Cancer Res ; 19(1): 121, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29141657

RESUMO

BACKGROUND: Approximately 70% of all breast cancers express the estrogen receptor, and are regulated by estrogen. While the ovaries are the primary source of estrogen in premenopausal women, most breast cancer is diagnosed following menopause, when systemic levels of this hormone decline. Estrogen production from androgen precursors is catalyzed by the aromatase enzyme. Although aromatase expression and local estrogen production in breast adipose tissue have been implicated in the development of primary breast cancer, the source of estrogen involved in the regulation of estrogen receptor-positive (ER+) metastatic breast cancer progression is less clear. METHODS: Bone is the most common distant site of breast cancer metastasis, particularly for ER+ breast cancers. We employed a co-culture model using trabecular  bone tissues obtained from total hip replacement (THR) surgery specimens to study ER+ and estrogen receptor-negative (ER-) breast cancer cells within the human bone microenvironment. Luciferase-expressing ER+ (MCF-7, T-47D, ZR-75) and ER- (SK-BR-3, MDA-MB-231, MCF-10A) breast cancer cells were cultured directly on bone tissue fragments or in bone tissue-conditioned media, and monitored over time with bioluminescence imaging (BLI). Bone tissue-conditioned media were generated in the presence vs. absence of aromatase inhibitors, and testosterone. Bone tissue fragments were analyzed for aromatase expression by immunohistochemistry. RESULTS: ER+ breast cancer cells were preferentially sustained in co-cultures with bone tissues and bone tissue-conditioned media relative to ER- cells. Bone fragments analyzed by immunohistochemistry revealed expression of the aromatase enzyme. Bone tissue-conditioned media generated in the presence of testosterone had increased estrogen levels and heightened capacity to stimulate ER+ breast cancer cell proliferation. Pretreatment of cultured bone tissues with aromatase inhibitors, which inhibited estrogen production, reduced the capacity of conditioned media to stimulate ER+ cell proliferation. CONCLUSIONS: These results suggest that a local estrogen signaling axis regulates ER+ breast cancer cell viability and proliferation within the bone metastatic niche, and that aromatase inhibitors modulate this axis. Although endocrine therapies are highly effective in the treatment of ER+ breast cancer, resistance to these treatments reduces their efficacy. Characterization of estrogen signaling networks within the bone microenvironment will identify new strategies for combating metastatic progression and endocrine resistance.


Assuntos
Osso e Ossos/metabolismo , Osso e Ossos/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Microambiente Celular , Estrogênios/metabolismo , Receptores Estrogênicos/metabolismo , Aromatase/genética , Aromatase/metabolismo , Inibidores da Aromatase/farmacologia , Biomarcadores Tumorais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Remodelação Óssea , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Imuno-Histoquímica , Medições Luminescentes , Imagem Molecular , Técnicas de Cultura de Tecidos
20.
Cancer Discov ; 7(12): 1394-1403, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28899864

RESUMO

Identifying molecular residual disease (MRD) after treatment of localized lung cancer could facilitate early intervention and personalization of adjuvant therapies. Here, we apply cancer personalized profiling by deep sequencing (CAPP-seq) circulating tumor DNA (ctDNA) analysis to 255 samples from 40 patients treated with curative intent for stage I-III lung cancer and 54 healthy adults. In 94% of evaluable patients experiencing recurrence, ctDNA was detectable in the first posttreatment blood sample, indicating reliable identification of MRD. Posttreatment ctDNA detection preceded radiographic progression in 72% of patients by a median of 5.2 months, and 53% of patients harbored ctDNA mutation profiles associated with favorable responses to tyrosine kinase inhibitors or immune checkpoint blockade. Collectively, these results indicate that ctDNA MRD in patients with lung cancer can be accurately detected using CAPP-seq and may allow personalized adjuvant treatment while disease burden is lowest.Significance: This study shows that ctDNA analysis can robustly identify posttreatment MRD in patients with localized lung cancer, identifying residual/recurrent disease earlier than standard-of-care radiologic imaging, and thus could facilitate personalized adjuvant treatment at early time points when disease burden is lowest. Cancer Discov; 7(12); 1394-403. ©2017 AACR.See related commentary by Comino-Mendez and Turner, p. 1368This article is highlighted in the In This Issue feature, p. 1355.


Assuntos
DNA Tumoral Circulante/genética , Neoplasias Pulmonares/genética , Neoplasia Residual/diagnóstico , Feminino , Humanos , Masculino , Neoplasia Residual/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA