Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Environ Sci Technol ; 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33949853

RESUMO

A new optimized ultraviolet (UV) technique induced a photooxidation surface modification on thin-film composite (TFC) polyamide (PA) brackish water reverse osmosis (BWRO) membranes that improved membrane performance (i.e., permeability and organic fouling propensity). Commercial PA membranes were irradiated with UV-B light (285 nm), and the changes in the membrane performance were assessed through dead-end and cross-flow tests. UV-B irradiation at 12 J·cm-2 enhanced the pure water permeability by 34% in the dead-end tests without decreasing the mono- or divalent ion rejections, as compared with the pristine PA membrane, and led to less fouling by natural organic matter in the cross-flow tests. Scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and X-ray photoelectron spectroscopy (XPS) confirmed that UV-B irradiation opened the pore structure and created carboxylic and amine groups on the PA surface, leading to increased membrane surface charge and hydrophilicity. Thus, an optimal UV-B dose appears to modify only a thin layer of the PA membrane surface, which favorably enhances the membrane performance. UV-B did not alter the structure, flux, or salt rejection for cellulose triacetate (CTA)-based membranes. While other membrane surface modifications include oxidants, strong acids, and bases, the UV-B facile treatment is chemical-free, thus reducing chemical wastes, and easy to apply in roll-to-roll fabrication processes of PA membranes. The results also showed that a low UV irradiation dose could be applied to PA or CTA membranes for disinfection or photocatalytic oxidation.

2.
Water Res ; 194: 116964, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33652228

RESUMO

Drinking water treatment plants (DWTPs) produce filter backwash water (FBW) and sedimentation sludge water (SSW) that may be partially recycled to the head of DWTPs. The impacts of key disinfection conditions, water quality parameters (e.g., disinfection times, disinfectant types and doses, and pH values), and bromide concentration on controlling the formation of trihalomethanes (THMs), haloacetic acids (HAAs), haloacetonitriles (HANs), and haloacetamides (HAMs) during disinfection of FBW and SSW were investigated. Concentrations of most disinfection byproducts (DBPs) and associated calculated toxicity increased with extended chlorination for both FBW and SSW. During chlorination of both FBW and SSW, elevated chlorine doses significantly increased THM yields per unit dissolved organic carbon (DOC), but decreased HAN and HAM yields, with minimum effect on HAA yields. Chloramine disinfection effectively inhibited C-DBP formation but promoted N-DBPs yields, which increased with chloramine dose. Calculated toxicities after chloramination increased with chloramine dose, which was opposite to the trend found after free chlorine addition. An examination of pH effects demonstrated that C-DBPs were more readily generated at alkaline pH (pH=8), while acidic conditions (pH=6) favored N-DBP formation. Total DBP concentrations increased at higher pH levels, but calculated DBP toxicity deceased due to lower HAN and HAM concentrations. Addition of bromide markedly increased bromo-THM and bromo-HAN formation, which are more cytotoxic than chlorinated analogues, but had little impact on the formation of HAAs and HAMs. Bromide incorporation factors (BIFs) for THMs and HANs from both water samples all significantly increased as bromide concentrations increased. Overall, high bromide concentrations increased the calculated toxicity values in FBW and SSW after chlorination. Therefore, while currently challenging, technologies capable of removing bromide should be explored as part of a strategy towards controlling cumulative toxicity burden (i.e., hazard) while simultaneously lowering individual DBP concentrations (i.e., exposure) to manage DBP risks in drinking water.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Esgotos , Trialometanos , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 55(8): 4287-4304, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33709709

RESUMO

Nanomaterial adsorbents (NAs) have shown promise to efficiently remove toxic metals from water, yet their practical use remains challenging. Limited understanding of adsorption mechanisms and scaling up evaluation are the two main obstacles. To fully realize the practical use of NAs for metal removal, we review the advanced tools and chemical principles to identify mechanisms, highlight the importance of adsorption capacity and kinetics on engineering design, and propose a systematic engineering scenario for full-scale NA implementation. Specifically, we provide in-depth insight for using density functional theory (DFT) and/or X-ray absorption fine structure (XAFS) to elucidate adsorption mechanisms in terms of active site verification and molecular interaction configuration. Furthermore, we discuss engineering issues for designing, scaling, and operating NA systems, including adsorption modeling, reactor selection, and NA regeneration, recovery, and disposal. This review also prioritizes research needs for (i) determining NA microstructure properties using DFT, XAFS, and machine learning and (ii) recovering NAs from treated water. Our critical review is expected to guide and advance the development of highly efficient NAs for engineering applications.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Água , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 55(1): 689-699, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33346661

RESUMO

Chlorine radicals, including Cl• and Cl2•-, can be produced in sunlight waters (rivers, oceans, and lakes) or water treatment processes (e.g., electrochemical and advanced oxidation processes). Dissolved organic matter (DOM) is a major reactant with, or a scavenger of, Cl• and Cl2•- in water, but limited quantitative information exists regarding the influence of DOM structure on its reactivity with Cl• and Cl2•-. This study aimed at quantifying the reaction rates and the formation of chlorinated organic byproducts produced from Cl• and Cl2•- reactions with DOM. Laser flash photolysis experiments were conducted to quantify the second-order reaction rate constants of 19 DOM isolates with Cl• (kDOM-Cl•) and Cl2•- (kDOM-Cl2•-), and compare those with the hydroxyl radical rate constants (kDOM-•OH). The values for kDOM-Cl• ((3.71 ± 0.34) × 108 to (1.52 ± 1.56) × 109 MC-1 s-1) were orders of magnitude greater than the kDOM-Cl2•- values ((4.60 ± 0.90) × 106 to (3.57 ± 0.53) × 107 MC-1 s-1). kDOM-Cl• negatively correlated with the weight-averaged molecular weight (MW) due to the diffusion-controlled reactions. DOM with high aromaticity and total antioxidant capacity tended to react faster with Cl2•-. During the same experiments, we also monitored the formation of chlorinated byproducts through the evolution of total organic chlorine (TOCl) as a function of chlorine radical oxidant exposure (CT value). Maximum TOCl occurred at a CT of 4-8 × 10-12 M·s for Cl• and 1.1-2.2 × 10-10 M·s for Cl2•-. These results signify the importance of DOM in scavenging chlorine radicals and the potential risks of producing chlorinated byproducts of unknown toxicity.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cloro , Radical Hidroxila , Rios , Poluentes Químicos da Água/análise
6.
Chemosphere ; 268: 129320, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33360942

RESUMO

Photoelectrocatalytic (PEC) water treatment is a promising technology for organic pollution abatement. Much of the prior research focused on material discovery and optimization. However, challenges exist in scaling-up PEC processes and are associated with designing reactors with effective light irradiation on electrode surfaces and, simultaneously, efficient electrode configurations. We design and demonstrate key reactor design principles, which influence reaction mechanisms, for a reactor using a TiO2 nanotube-coated disc flow reactor. Degradation of organochlorinated 2,4-dichlorophenol was studied as representative carcinogenic micropollutant. The synergistic photoelectrocatalytic process showed 5-fold faster degradation kinetics than solely electrocatalytic treatment or a greater than 2-fold enhancement over photocatalysis alone. Applicability of photoelectrocatalytic treatment was demonstrated over a wide range of micropollutant concentrations with almost complete abatement even at concentrations up to 25 mg L-1 of 2,4-dichlorophenol. Mechanistically, the increase in applied current density efficiency for degradation of 2,4-dichlorophenol was due to stabilization of charge carriers and higher oxidants production rates in the PEC system. Carboxylic acids were identified as the main by-products formed from cleavage of the phenolic ring moieties in 2,4-dichlorophenol. However, very importantly we achieved dehalogenation photoelectrocatalysis with evidence of chlorine heteroatoms released as innocuous chloride anions. Overall, this research demonstrates the importance of PEC reactor design and how properly orientated TiO2 nanotube-coated disc flow reactors leverage both novel material designs and reactor architectures to achieve pollutant degradation.


Assuntos
Nanotubos , Catálise , Clorofenóis , Eletrodos , Titânio
7.
ACS Appl Mater Interfaces ; 12(46): 51864-51872, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33166126

RESUMO

Advances in solar steam generation have made a promise in mitigating the water scarcity problem. However, their practical use could be curtailed by the vaporized pollutants and the longevity limited by biofouling and salt-fouling that are often overlooked. Here, a flake of wood is reported to be engineered into a miniaturized solar water treatment device by a laser engraving process and demonstrates advantages over common solar systems. The device is structured to mimic the centralized water treatment plants, which contains a superhydrophilic graphene bottom layer for lipophilic organic matter rejection and antifouling, an intrinsic wood microchannels layer for water transport and thermal management, and a hydrophobic graphene top layer for solar-driven desalination while inhibiting salt deposition. The pore size of wood differentiates the water flux and hence the evaporation performance, and the balsa wood with a larger pore size possesses a higher evaporation rate of 1.6 ± 0.02 kg m-2 h-1 compared with pine wood. The hierarchical design achieves a solar energy conversion efficiency of 110% and a lipophilic organic matter removal efficiency of >90% and significantly improves longevity even at high salinity. This work illuminates a sustainable and cost-effective pathway for water treatment and shows potential for wastewater reuse.

8.
NanoImpact ; 172020.
Artigo em Inglês | MEDLINE | ID: mdl-33029568

RESUMO

Pigments with nanoscale dimensions are added to exterior coatings to achieve desirable color and gloss properties. The present study compared the performance, degradation, and release behavior of an acrylic coating that was pigmented by a nanoform of Cu-phthalocyanine after both natural (i.e., outdoor) and accelerated weathering. Samples were weathered outdoors in three geographically distinct locations across the United States (Arizona, Colorado, Maryland) continuously for 15 months. Identically prepared samples were also artificially weathered under accelerated conditions (increased ultraviolet (UV) light intensity and elevated temperatures) for three months, in one-month increments. After exposure, both sets of samples were characterized with color, gloss, and infrared spectroscopy measurements, and selectively with surface roughness measurements. Results indicated that UV-driven coating oxidation was the principal degradation pathway for both natural and accelerated weathering samples, with accelerated weathering leading to an increased rate of oxidation without altering the fundamental degradation pathway. The inclusion of the nanoform pigment reduced the rate of coating oxidation, via UV absorption by the pigment, leading to improved coating integrity compared to non-pigmented samples. Release measurements collected during natural weathering studies indicated there was never a period of weathering, in any location, that led to copper material release above background copper measurements. Lab-based release experiments performed on samples weathered naturally and under accelerated conditions found that the release of degraded coating material after each type of exposure was diminished by the inclusion of the nanoform pigment. Release measurements also indicated that the nanoform pigment remained embedded within the coating and did not release after weathering.

10.
Water Res ; 186: 116346, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866929

RESUMO

Haloacetonitriles (HANs) and haloacetamides (HAMs) are nitrogenous disinfection byproducts that are present in filter backwash water (FBW) and sedimentation sludge water (SSW). In many cases FBW and SSW are recycled to the head of drinking water treatment plants. HAN and HAM concentrations in FBW and SSW, without additional oxidants, ranged from 6.8 to 11.6 nM and 2.9 to 3.6 nM of three HANs and four HAMs, respectively. Upon oxidant addition to FBW and SSW under formation potential conditions, concentrations for six HANs and six HAMs ranged from 92.2 to 190.4 nM and 42.2 to 95.5 nM, respectively. Therefore, at common FBW and SSW recycle rates (2 to 10% of treated water flows), the precursor levels in these recycle waters should not be ignored because they are comparable to levels present in finished water. Brominated HAN and chlorinated HAM were the dominant species in FBW and SSW, respectively. The lowest molecular weight ultrafiltration fraction (< 3 kDa) contributed the most to HAN and HAM formations. The hydrophilic (HPI) organic fraction contributed the greatest to HAN precursors in sand-FBW and SSW and were the most reactive HAM precursors in both sand- or carbon-FBWs. Fluorescence revealed that aromatic protein-like compounds were dominant HAN and HAM precursors. Therefore, strategies that remove low molecular weight hydrophilic organic matter and aromatic protein-like compounds will minimize HAN and HAM formations in recycled FBW and SSW.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Halogenação , Esgotos , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 737: 140044, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783828

RESUMO

Portable water purification devices are needed to provide safe drinking water in rural communities, developing communities with low quality centralized water distribution, and military or recreational applications. Filtration, ultraviolet light, or chemical additives provide a spectrum of alternatives to remove pathogens from water. For the first time, we design, fabricate and demonstrate the performance of a small portable photoelectric point-of-use device, and document its performance on pathogen inactivation. The device utilizes a commercial teacup from which TiO2 nanotube photoanodes were produced in-situ and, with a small rechargeable battery powered 365 nm light emitting diode, was able to achieve 5-log inactivation of Escherichia coli in 10 s and 2.6-log of Legionella in 60 s of treatment in model water samples. Treatment of natural water achieved a 1-log bacteria inactivation after 30 s due to matrix effects. The electro-photocatalytic disinfection reactor in a kup (e-DRINK) can provide a feasible and affordable solution to ensure access to clean water. More broadly, this work demonstrates the potential for illumination to improve the efficiency of electrocatalytic surfaces.


Assuntos
Proteínas de Escherichia coli , Purificação da Água , Desinfecção , Escherichia coli , Raios Ultravioleta , Água , Microbiologia da Água
12.
Water Res ; 184: 116134, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32810769

RESUMO

Maximizing water recovery and minimizing the volume of RO concentrate (i.e., brine) produced is a growing challenge, especially for inland communities that lack ocean disposal options. In such regions, transitioning towards zero liquid discharge (ZLD) can avoid detrimental impacts associated with salt disposal via regional sewer discharge or deep-well injection. On-site ZLD energy requirements are proportional to the RO brine flowrate. Thus, system-level strategies that reduce RO brine flows will lower ZLD costs while simultaneously increasing the overall water recovery for beneficial reuse in reclamation facilities. We investigated a membrane distillation (MD) system operating using co-located, cooler source water to treat warmer wastewater RO brine. Using experimentally-quantified MD fluxes based on observed monthly water temperatures of co-located water and RO brine at a facility in central Arizona, and based on the previously reported performance of large-scale MD systems, energy consumption and operating cost were estimated to evaluate the potential capabilities of MD to treat RO brine at full scale facilities. When the RO unit was combined with MD brine treatment, net water recovery at the full-scale facility can increase from 85% to up to 91% while brine flow can be reduced by 26%. A 25% lower thermal energy was required to achieve RO net water recovery of 95% when using co-located water, compared against conventional MD without using co-located water. Overall, this work demonstrates the potential to use local thermal gradients to reduce RO brine volumes, thereby reducing ZLD costs.


Assuntos
Destilação , Purificação da Água , Arizona , Membranas Artificiais , Osmose , Sais , Eliminação de Resíduos Líquidos , Águas Residuárias , Água
13.
Environ Sci Technol ; 54(17): 10599-10609, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786591

RESUMO

The recent discovery of magnetic nanoparticles (NPs) in human brain tissue has raised concerns regarding their source and neurotoxicity. As previous studies have suggested that magnetite in urban dust may be the source, we collected urban magnetic dust and thoroughly characterized the nature of ambient urban magnetic dust particles prior to investigating their neurotoxic potential. In addition to magnetite, magnetic dust contained an abundance (∼40%) of elemental iron (Fe0). The coexistence of magnetite and elemental iron was found in magnetic dust particles of inhalable (<10 µm) and nanoscale (<200 nm) size ranges with these particles small enough to enter the human brain via the respiratory tract and olfactory bulbs. The magnetic dust also contained nonferrous water-soluble metals (particularly Cu) that can induce formation of reactive oxygen species (ROS). Previous studies used engineered pure-magnetite for in vitro ROS studies. However, while magnetite was present in all magnetic dust particles collected, engineered pure-magnetite was relatively unreactive and contributed minimally to the generation of ROS. We fill a critical knowledge gap between exposure to heterogeneous ambient iron-particles and in vitro experiments with engineered versus ambient, incidental iron-bearing nanoscale minerals. Our work points to the need to further investigate the presence and properties of magnetic NPs in respirable dust with respect to their potential role in neurodegeneration.

14.
Environ Sci Technol ; 54(18): 11584-11593, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32794774

RESUMO

Photolysis of free chlorine (HOCl/ClO-) is an advanced oxidation process (AOP) to produce hydroxyl (HO•) and other radicals for refractory micropollutant degradation. However, HOCl/ClO- is only conducive to activation and production of radicals by ultraviolet (UV) light. For the first time, we show the use of visible light (>400 nm) to produce HO• and ClO•, through use of graphitic carbon nitride (g-C3N4) and photogenerated hvb+, ecb-, and O2•- in the presence of HOCl/ClO-, which was termed visible light g-C3N4-enabled chlorine AOP (VgC-AOP). The VgC-AOP increased the pseudo first-order degradation rate constant of a model micropollutant, carbamazepine, by 16 and 7 times higher than that without g-C3N4 and HOCl/ClO-, respectively, and remained active over multiple use cycles. Effects of water quality [pH, alkalinity, Cu(II), and natural organic matter (NOM)] and the operational conditions (g-C3N4 and HOCl/ClO- concentrations, irradiation wavelength, and dose) were investigated. Of particular significance is its superior performance in the presence of NOM, which absorbs less light at visible light wavelengths and scavenges less surface-bonded reactive species, compared against UV/TiO2 or UV/chlorine AOPs. The VgC-AOP is practically relevant, feasible, and easily implementable and it expands the potential types of light sources (e.g., LEDs and solar light).

15.
Sci Total Environ ; 743: 140845, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32758854

RESUMO

Detection of metal nanoparticles (NPs) in the environment is an analytical challenge of interest due to increasing use of nanomaterials in consumer and industrial products. Detecting NPs associated with human activities is affected by both the magnitude and variation in background concentrations of natural NPs. In this work, we investigated the potential release of titanium dioxide (TiO2) NPs from sunscreen in three recreational rivers, with a time-intensive sampling regime on one river, in order to determine the range and variability of natural, background titania (Ti). Conventional ICP analysis for total metal concentrations, single particle ICP-MS for NP concentrations, and electron microscopy aided in assessing mineralogical morphology and composition. Oxybenzone, a widely-used organic sunscreen, was measured and used as a surrogate for the intensity of recreational activity in the water. Statistically significant increases in Ti concentrations were observed in Clear Creek, CO during one recreation period, but the significance of other instances of recreation-associated Ti increases was unclear, in part due to storm impacts on the natural suspended sediment load of the stream. A comparison of three recreational rivers showed increases in both Ti mass concentrations and NP sizes occur during recreation in both Clear Creek, CO and the Salt River, AZ, but no detectable changes in the Truckee River, NV. However, size distributions were variable in background samples, which make the significance of differences observed during recreation unclear. These results underline that the release of engineered nanoparticles to a natural system cannot be detected without a well-defined background, including measures of its variability during the study period.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Poluentes Químicos da Água/análise , Humanos , Rios , Protetores Solares/análise , Titânio/análise
16.
Water Res ; 184: 116191, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721764

RESUMO

This paper investigates using UV-C side-emitting optical fibers (SEOFs) to prevent growth of pathogenic bacteria (Pseudomonas aeruginosa and Escherichia coli) on nutrient-rich surfaces. Attaching a SEOF to a single 265 nm light emitting diode (LED) increases irradiation area by >1000x and provides continuous low-irradiance of UV-C light to a large surface area. A zone-of-inhibition protocol was developed to quantify bacterial growth prevention on an agar plate around one SEOF. The inhibition zone increased linearly with irradiance time until achieving a maximum inhibition zone of 2.5 to 3 cm, which received ~ 4.3 mJ/cm2 of 265 nm light in 2 hours. The surviving lawn edge bacterial colonies did not develop UV resistance after two generations of exposure. The agar plate remained bio-available after UV exposure, and bacteria could be grown on pre-illuminated area in the absence of UV-C light. Whereas we previously demonstrated SEOFs can inactivate planktonic bacteria, herein we show the ability of SEOFs to prevent bacteria growth on surfaces. This is the first step towards developing technologies with multiple SEOFs to inhibit biofilm growth on surfaces, which is a ubiquitous challenge across multiple applications from membrane surfaces to surfaces in pipes or water storage systems.


Assuntos
Escherichia coli , Pseudomonas aeruginosa , Biofilmes , Desinfecção , Fibras Ópticas , Raios Ultravioleta
17.
Environ Sci Technol ; 54(15): 9437-9444, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32639147

RESUMO

Cerium oxide (CeO2) nanoparticles (NPs) are massively used as abrasives in the chemical and mechanical polishing (CMP), an essential process to manufacture semiconductor wafers. The CMP process for arsenide-based semiconductor materials produces wastewater with co-occurring arsenic (As) ions and CeO2 NPs. We found that CeO2 NPs adsorbed both arsenite (As(III)) and arsenate (As(V)) ions and the adsorption isotherms suggested different adsorption energies and capacities of the two species. Applying the ferric reducing ability for nanoparticle assay, we revealed that the adsorbed As(III) and As(V) each reduced CeO2 NP surface reactivity but followed different mechanisms. The adsorbed As(III) ions below a critical coverage (110 mmol/kg) increased occupation of Ce 4f orbitals and thus reduced electron mobility of the original CeO2 NPs. The adsorbed As(V) ions withdrew electrons from Ce 4f orbitals and likely became oxidizing agents that greatly inhibited the original surface reducing ability. Electron paramagnetic resonance analysis further revealed that adsorbed As(III) and As(V) ions decreased the propensity of CeO2 NPs to produce reactive oxygen species. This work highlights the importance of examining NPs in their post-use phases in which surface reactivity and hazard potential can be greatly altered by chemical exposure history and NP surface transformations.


Assuntos
Arsênico , Cério , Nanopartículas Metálicas , Nanopartículas , Adsorção , Íons
18.
Nat Nanotechnol ; 15(9): 801-810, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32572231

RESUMO

The globally recognized need to advance more sustainable agriculture and food systems has motivated the emergence of transdisciplinary solutions, which include methodologies that utilize the properties of materials at the nanoscale to address extensive and inefficient resource use. Despite the promising prospects of these nanoscale materials, the potential for large-scale applications directly to the environment and to crops necessitates precautionary measures to avoid unintended consequences. Further, the effects of using engineered nanomaterials (ENMs) in agricultural practices cascade throughout their life cycle and include effects from upstream-embodied resources and emissions from ENM production as well as their potential downstream environmental implications. Building on decades-long research in ENM synthesis, biological and environmental interactions, fate, transport and transformation, there is the opportunity to inform the sustainable design of nano-enabled agrochemicals. Here we perform a screening-level analysis that considers the system-wide benefits and costs for opportunities in which ENMs can advance the sustainability of crop-based agriculture. These include their on-farm use as (1) soil amendments to offset nitrogen fertilizer inputs, (2) seed coatings to increase germination rates and (3) foliar sprays to enhance yields. In each analysis, the nano-enabled alternatives are compared against the current practice on the basis of performance and embodied energy. In addition to identifying the ENM compositions and application approaches with the greatest potential to sustainably advance crop production, we present a holistic, prospective, systems-based approach that promotes emerging alternatives that have net performance and environmental benefits.

19.
Environ Sci Technol ; 54(16): 9769-9790, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32515947

RESUMO

Development of novel adsorbents often neglects the competitive adsorption between co-occurring oxo-anions, overestimating realistic pollutant removal potentials, and overlooking the need to improve selectivity of materials. This critical review focuses on adsorptive competition between commonly co-occurring oxo-anions in water and mechanistic approaches for the design and development of selective adsorbents. Six "target" oxo-anion pollutants (arsenate, arsenite, selenate, selenite, chromate, and perchlorate) were selected for study. Five "competing" co-occurring oxo-anions (phosphate, sulfate, bicarbonate, silicate, and nitrate) were selected due to their potential to compete with target oxo-anions for sorption sites resulting in decreased removal of the target oxo-anions. First, a comprehensive review of competition between target and competitor oxo-anions to sorb on commonly used, nonselective, metal (hydr)oxide materials is presented, and the strength of competition between each target and competitive oxo-anion pair is classified. This is followed by a critical discussion of the different equations and models used to quantify selectivity. Next, four mechanisms that have been successfully utilized in the development of selective adsorbents are reviewed: variation in surface complexation, Lewis acid/base hardness, steric hindrance, and electrostatic interactions. For each mechanism, the oxo-anions, both target and competitors, are ranked in terms of adsorptive attraction and technologies that exploit this mechanism are reviewed. Third, given the significant effort to evaluate these systems empirically, the potential to use computational quantum techniques, such as density functional theory (DFT), for modeling and prediction is explored. Finally, areas within the field of selective adsorption requiring further research are detailed with guidance on priorities for screening and defining selective adsorbents.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Ânions , Cinética , Fosfatos , Água , Poluentes Químicos da Água/análise
20.
Environ Sci Technol ; 54(11): 6449-6450, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482078
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...