Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acc Chem Res ; 55(19): 2811-2820, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36129235

RESUMO

ConspectusThermoelectric (TE) materials have received much attention because of their ability to convert heat energy to electrical energy. At a given temperature T, the efficiency of a TE material for this energy conversion is measured by the figure of merit zT, which is related to the thermopower (or Seebeck coefficient) S, the thermal conductivity κ, and the electrical conductivity σ of the TE material as zT = (S2σT)/κ. Bi2Q3 and PbQ (Q = Se, Te) are efficient TE materials with high zT, although they are not ecofriendly and their stability is poor at high temperature. In principle, a TE material can have a high zT if it has a low thermal conductivity and a high electrical conductivity, but the latter condition is hardly met in a real material because the parameters S, σ and κ have a conflicting dependence on material properties. The difficulty in searching for TE materials of high zT is even more exasperated because the relationship between the thermopower S and the carrier density n (hereafter, the S-vs-n relationship) for the well-known hole-doped samples of BiCuSeO showed that the hole carriers responsible for their thermopower are associated largely with the electronic states lying within ∼0.5 eV of its valence band maximum (VBM). Thus, the states governing the TE properties lie in the "skin-deep" region from the VBM. For electron-doped TE systems, the electron carriers responsible for their thermopower should also be associated with the electronic states lying within ∼0.5 eV of the conduction band minimum (CBM). This makes it difficult to predict TE materials of high zT. One faces a similar skin-deep phenomenon in searching for superconductors of high transition temperature because the transition from a normal metallic to a superconducting state involves the normal metallic states in the vicinity of the Fermi level EF. Other skin-deep phenomena in metallic compounds include the formation of charge density wave (CDW), which involves the electronic states in the vicinity of their Fermi levels. For magnetic materials of transition-metal ions, the preferred orientation of their spin moments is a skin-deep phenomenon because it is governed by the interaction between the highest-occupied and the lowest unoccupied d-states of these ions. In the present work we probe the issues concerning how to find the possible range of thermopower expected for a given TE material and hence how to recognize what experimental values of thermopower are expected or unusual. For these purposes, we analyze the accumulated S and n data on the three well-studied TE materials, Bi2Q3, PbQ, and BiCuQO (Q = Se, Te), as representative examples, in terms of the ideal theoretical S-vs-n relationships, which we determine for their defect-free Bi2Q3, PbQ, and BiCuQO structures using density functional theory (DFT) calculations under the rigid band approximation. We find that the general trends in the experimental S-vs-n relationships are reasonably well explained by the calculated S-vs-n relationships, and the carrier densities covering these relationships are associated with the states lying within ∼0.5 eV from their band edges confirming the skin-deep nature of their thermoelectric properties. Despite the fact that these TE materials are not one-dimensional (1D) in structure, they mostly possess sharp density-of-state peaks around their band edges because their band dispersions have a hidden 1D character so their thermopower is generally high in magnitude.

2.
J Am Chem Soc ; 144(36): 16272-16275, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044247

RESUMO

We examined what interactions control the sign and strength of the interlayer coupling in van der Waals ferromagnets such as Fe3-xGeTe2, Cr2Ge2Te6, CrI3, and VI3 to find that high-spin orbital interactions across the van der Waals gaps are a key to understanding their ferromagnetism. Interlayer ferromagnetic coupling in Fe3-xGeTe2, Cr2Ge2Te6, and CrI3 is governed by the high-spin two-orbital two-electron destabilization, but that in VI3 by the high-spin four-orbital two-electron stabilization. These interactions explain a number of seemingly puzzling observations in van der Waals ferromagnets.

3.
Natl Sci Rev ; 9(7): nwac017, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35983369

RESUMO

As early as 2001, the need for the 'functional motif theory' was pointed out, to assist the rational design of functional materials. The properties of materials are determined by their functional motifs and how they are arranged in the materials. Uncovering functional motifs and their arrangements is crucial in understanding the properties of materials and rationally designing new materials of desired properties. The functional motifs of materials are the critical microstructural units (e.g. constituent components and building blocks) that play a decisive role in generating certain material functions, and can not be replaced with other structural units without the loss, or significant suppression, of relevant functions. The role of functional motifs and their arrangement in materials, with representative examples, is presented. The microscopic structures of these examples can be classified into six types on a length scale smaller than ∼10 nm with maximum subatomic resolution, i.e. crystal, magnetic, aperiodic, defect, local and electronic structures. Functional motif analysis can be employed in the function-oriented design of materials, as elucidated by taking infrared non-linear optical materials as an example. Machine learning is more efficient in predicting material properties and screening materials with high efficiency than high-throughput experimentation and high-throughput calculations. In order to extract functional motifs and find their quantitative relationships, the development of sufficiently reliable databases for material structures and properties is imperative.

4.
Materials (Basel) ; 15(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35407895

RESUMO

The static and dynamic magnetic properties and the specific heat of K2Ni2TeO6 and Li2Ni2TeO6 were examined and it was found that they undergo a long-range ordering at TN = 22.8 and 24.4 K, respectively, but exhibit a strong short-range order. At high temperature, the magnetic susceptibilities of K2Ni2TeO6 and Li2Ni2TeO6 are described by a Curie-Weiss law, with Curie-Weiss temperatures Θ of approximately -13 and -20 K, respectively, leading to the effective magnetic moment of about 4.46 ± 0.01 µB per formula unit, as expected for Ni2+ (S = 1) ions. In the paramagnetic region, the ESR spectra of K2Ni2TeO6 and Li2Ni2TeO6 show a single Lorentzian-shaped line characterized by the isotropic effective g-factor, g = 2.19 ± 0.01. The energy-mapping analysis shows that the honeycomb layers of A2Ni2TeO6 (A = K, Li) and Li3Ni2SbO6 adopt a zigzag order, in which zigzag ferromagnetic chains are antiferromagnetically coupled, because the third nearest-neighbor spin exchanges are strongly antiferromagnetic while the first nearest-neighbor spin exchanges are strongly ferromagnetic, and that adjacent zigzag-ordered honeycomb layers prefer to be ferromagnetically coupled. The short-range order of the zigzag-ordered honeycomb lattices of K2Ni2TeO6 and Li2Ni2TeO6 is equivalent to that of an antiferromagnetic uniform chain, and is related to the short-range order of the ferromagnetic chains along the direction perpendicular to the chains.

5.
Angew Chem Int Ed Engl ; 61(15): e202116404, 2022 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156284

RESUMO

Heat-induced blueshift (HIB) observed in many luminescent materials is a puzzling phenomenon that has remained unexplained for decades. By using the high-throughput first-principles calculations and energy-screening techniques, we generated a number of model structures for five phosphors, RbLi[Li3 SiO4 ]2 :Eu2+ , Na[Li3 SiO4 ]:Eu2+ , K[Li3 SiO4 ]:Eu2+ , Sr[LiAl3 N4 ]:Eu2+ , and Ca[LiAl3 N4 ]:Eu2+ . Our analyses suggest, to a first approximation, a logarithmic energy dependence on the nearest distance between the dopant and the metal-cation vacancy. By identifying the 5 d → 4 f transition energies from the electronic structures calculated for the screened model structures, we show that the vibration of the Eu2+ ion lying in an asymmetric and anharmonic potential well couples with the electronic states, leading to their HIB phenomena.

6.
Inorg Chem ; 61(9): 3843-3850, 2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35195990

RESUMO

Density functional theory calculations were carried out to probe the nature of the electronic structure change in TiPO4 before and after its spin-Peierls distortion at 74.5 K, which is characterized by the dimerization in the chains of Ti3+ (d1) ions present in TiPO4. These calculations suggest strongly that the electronic state of TiPO4 is magnetic insulating before the distortion, but becomes nonmagnetic insulating after the distortion. Consistent with this suggestion, the phonon dispersion relations calculated for TiPO4 show that the undistorted TiPO4 is stable, while the distorted TiPO4 is not, if each Ti3+ ion has a spin moment, and that the opposite is true if each Ti3+ ion has no spin moment. These observations suggest that the driving force for the spin-Peierls distortion is the formation of direct metal-metal bonds leading to the dimerized chains of Ti3+ ions. The abrupt change in the electronic structures from a magnetic insulating state to a nonmagnetic insulating state explains why the spin-Peierls distortion of TiPO4 exhibits a first-order character. Although the two electronic states of TiPO4 before and after the distortion have a band gap, the substantial spin-Peierls distortion is found to enhance the thermoelectric properties of TiPO4.

7.
J Phys Chem Lett ; 12(46): 11399-11405, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34788048

RESUMO

Sr2Be2B2O7 (SBBO) has long been considered as one of the most promising deep-ultraviolet nonlinear optical materials, but its crystal structure described by space group P6̅c2 in previous studies has remained questionable. On the basis of first-principles calculations coupled with the high-throughput crystal structure prediction method, we found three energetically favorable structures for SBBO with space groups Cm, Pm, and P6̅. These structures and a superstructure of space group Pm-S derived from the Cm structure were refined by the Rietveld method using the available powder X-ray diffraction data. These analyses show that the Pm-S structure is the best one, but its parent Cm structure is almost equally good and has the advantage of having higher symmetry. Via atom response theory analysis, we resolved the cause for the second-harmonic generation (SHG) responses of SBBO at the atomic and orbital level to elucidate the importance of local inversion symmetry in reducing the SHG response.

8.
Molecules ; 26(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771033

RESUMO

John B [...].

9.
Inorg Chem ; 60(20): 15124-15127, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34606249

RESUMO

The magnetic structure of NaYMnWO6 was determined by neutron powder diffraction measurements. Below 9 K, the magnetic structure is a helix to wave vector k = (0, 0.447, 1/2), in contrast with NaYNiWO6, which shows a transverse spin density wave with k = (0.47, 0, 0.49). By analyzing the differences in the spin exchanges of NaYMnWO6 and NaYNiWO6, and in the magnetic anisotropies of the Mn2+ (d5, S = 5/2) and the Ni2+ (d2, S = 1) ions, we show what factors govern the propagation direction of a noncollinear magnetic structure and whether it becomes a helix or a cycloid.

10.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807780

RESUMO

We examined the magnetic ground states, the preferred spin orientations and the spin exchanges of four layered phases MPS3 (M = Mn, Fe, Co, Ni) by first principles density functional theory plus onsite repulsion (DFT + U) calculations. The magnetic ground states predicted for MPS3 by DFT + U calculations using their optimized crystal structures are in agreement with experiment for M = Mn, Co and Ni, but not for FePS3. DFT + U calculations including spin-orbit coupling correctly predict the observed spin orientations for FePS3, CoPS3 and NiPS3, but not for MnPS3. Further analyses suggest that the ||z spin direction observed for the Mn2+ ions of MnPS3 is caused by the magnetic dipole-dipole interaction in its magnetic ground state. Noting that the spin exchanges are determined by the ligand p-orbital tails of magnetic orbitals, we formulated qualitative rules governing spin exchanges as the guidelines for discussing and estimating the spin exchanges of magnetic solids. Use of these rules allowed us to recognize several unusual exchanges of MPS3, which are mediated by the symmetry-adapted group orbitals of P2S64- and exhibit unusual features unknown from other types of spin exchanges.


Assuntos
Ânions/química , Metais/química , Marcadores de Spin , Anisotropia , Teoria da Densidade Funcional , Magnetismo , Modelos Moleculares
11.
Molecules ; 26(4)2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33557181

RESUMO

The effective spin Hamiltonian method has drawn considerable attention for its power to explain and predict magnetic properties in various intriguing materials. In this review, we summarize different types of interactions between spins (hereafter, spin interactions, for short) that may be used in effective spin Hamiltonians as well as the various methods of computing the interaction parameters. A detailed discussion about the merits and possible pitfalls of each technique of computing interaction parameters is provided.


Assuntos
Fenômenos Magnéticos , Imãs , Modelos Teóricos
12.
Molecules ; 26(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498484

RESUMO

In this review on spin exchanges, written to provide guidelines useful for finding the spin lattice relevant for any given magnetic solid, we discuss how the values of spin exchanges in transition metal magnetic compounds are quantitatively determined from electronic structure calculations, which electronic factors control whether a spin exchange is antiferromagnetic or ferromagnetic, and how these factors are related to the geometrical parameters of the spin exchange path. In an extended solid containing transition metal magnetic ions, each metal ion M is surrounded with main-group ligands L to form an MLn polyhedron (typically, n = 3-6), and the unpaired spins of M are represented by the singly-occupied d-states (i.e., the magnetic orbitals) of MLn. Each magnetic orbital has the metal d-orbital combined out-of-phase with the ligand p-orbitals; therefore, the spin exchanges between adjacent metal ions M lead not only to the M-L-M-type exchanges, but also to the M-L…L-M-type exchanges in which the two metal ions do not share a common ligand. The latter can be further modified by d0 cations A such as V5+ and W6+ to bridge the L…L contact generating M-L…A…L-M-type exchanges. We describe several qualitative rules for predicting whether the M-L…L-M and M-L…A…L-M-type exchanges are antiferromagnetic or ferromagnetic by analyzing how the ligand p-orbitals in their magnetic orbitals (the ligand p-orbital tails, for short) are arranged in the exchange paths. Finally, we illustrate how these rules work by analyzing the crystal structures and magnetic properties of four cuprates of current interest: -CuV2O6, LiCuVO4, (CuCl)LaNb2O7, and Cu3(CO3)2(OH)2.


Assuntos
Íons/química , Magnetismo , Metais/química , Teoria Quântica , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Modelos Moleculares , Estrutura Molecular , Fenômenos Físicos , Elementos de Transição
13.
Inorg Chem ; 59(24): 17856-17859, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33285061

RESUMO

The incommensurate magnetic structure (0.47, 0, 0.49) of NaYNiWO6 exhibits unconventional spin-density waves (SDWs) along the [100] direction, in which up and down spins alternate in each half-wave. This is in contrast to conventional SDWs, in which only one type of spin is present in each half-wave. We probed the formation of these unconventional SDWs by evaluating the spin exchanges of NaYNiWO6 based on density functional theory calculations and analyzing the nature of the spin frustration in NaYNiWO6 and by noting that a SDW is a superposition of two cycloids of opposite chirality. The unconventional SDWs along the [100] direction originate from the spin-frustrated antiferromagnetic chains of Ni2+ ions along that direction, leading to conventional SDWs along the [101] direction and unconventional SDWs along the [001] direction.

14.
Inorg Chem ; 59(24): 18319-18324, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33289382

RESUMO

Neutron diffraction studies on magnetic solids composed of axially elongated CoO4X2 (X = Cl, Br, S, Se) octahedra show that the ordered magnetic moments of their high-spin Co2+ (d7, S = 3/2) ions are greater than 3 µB, i.e., the spin moment expected for S = 3/2 ions, and increase almost linearly from 3.22 to 4.45 µB as the bond-length ratio rCo-X/rCo-O increases from 1.347 to 1.659 where rCo-X and rCo-O are the Co-X and Co-O bond lengths, respectively. These observations imply that the orbital moments of the Co2+ ions increase linearly from 0.22 to 1.45 µB with increasing the rCo-X/rCo-O ratio from 1.347 to 1.659. We probed this implication by examining the condition for unquenched orbital moment and also by evaluating the magnetic moments of the Co2+ ions based on DFT+U+SOC calculations for those systems of the CoO4X2 octahedra. Our work shows that the orbital moments of the Co2+ ions are essentially quenched and, hence, that the observations of the neutron diffraction studies are not explained by the current theory of magnetic moments. This discrepancy between experiment and theory urges one to check the foundations of the current theory of magnetic moments as well as the current method of neutron diffraction refinements for ordered magnetic structures.

15.
Phys Chem Chem Phys ; 22(34): 19299-19306, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32820301

RESUMO

In implementing the materials genome approach to search for new materials with interesting properties or functions, it is necessary to find the correct functional motif. To this end, it is common to partition an extended structure into various building units and then partition its properties to find the appropriate functional motif. We have developed the general principles for partitioning a structure and its properties in terms of a set of atoms and bonds by analyzing the differential cross-sections of neutron and X-ray scattering phenomena and proposed the procedures with which to partition an extended structure and its properties. We demonstrate how these procedures work by analyzing the nonlinear optical crystal KBe2BO3F2. Our partitioning analysis of KBe2BO3F2 leads to the conclusion that the second harmonic generation response of KBe2BO3F2 is dominated by the ionically bonded metal-centered groups.

16.
Inorg Chem ; 59(15): 10628-10633, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32673479

RESUMO

In the presence of the roughly flat sequestering agent, [K(18-crown-6)]+, the reaction of Rh2(CO)4Cl2 with K5Bi4 in ethylenediamine (en) solution at room temperature yielded the heterometallic cluster anion [Rh@Bi10(RhCO)6]3- (1), in which two hitherto unknown Binm- building blocks (i.e., Bi6 crown and Bi4 pyramid) were stabilized by six +Rh-CO units. When the reaction was carried out at 60 °C using Rh(acac)(CO)2 (acac = acetylacetonate) as the source of +Rh-CO units, one obtained the anion [Rh@Bi9(RhCO)5]3- (2) in which two different Binn- units (n = 2, 3) and two weakly bonded Bi atoms were stabilized by five +Rh-CO units. The structures and bonding of the novel heterometallic cluster anions 1 and 2 were discussed.

17.
ACS Appl Mater Interfaces ; 12(26): 29153-29161, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32510189

RESUMO

To produce hydrogen economically by electrolysis of water, one needs to develop a non-precious-metal catalyst that is as efficient as platinum metal. Here, we prepare such a catalyst by growing a layer of Mo2N over a layer of CeO2 deposited on nickel foam (NF) [hereafter, Mo2N /CeO2@NF] and show that the activity of this self-supported catalyst for hydrogen evolution in 1.0 M KOH is more efficient than that of the Pt/C electrode, achieving a current density of 10 mA/cm2 at a fairly low overpotential of 26 mV. Furthermore, after a long-time electrochemical stability test for 24 h at a fixed current density, the overpotential needed to attain a current density of 10 mA/cm2 is increased only by 6 mV, implying the huge potential of this method to prepare a super HER activity electrode for water splitting.

18.
J Am Chem Soc ; 142(11): 5013-5016, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32142273

RESUMO

Materials with two-dimensional, geometrically frustrated, spin-1/2 lattices provide a fertile playground for the study of intriguing magnetic phenomena such as quantum spin liquid (QSL) behavior, but their preparation has been a challenge. In particular, the long-sought, exotic spin-1/2 star structure has not been experimentally realized to date. Here we report the synthesis of [(CH3)2(NH2)]3[CuII3(µ3-OH)(µ3-SO4)(µ3-SO4)3]·0.24H2O with an S = 1/2 star lattice. On the basis of the magnetic susceptibility and heat capacity measurements, the layered Cu-based compound exhibits antiferromagnetic interactions but no magnetic ordering or spin freezing down to 2 K. The spin-frustrated material appears to be a promising QSL candidate.

19.
Adv Sci (Weinh) ; 7(6): 1902820, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32195095

RESUMO

Cu2O nanoparticles (NPs) enclosed with different crystal facets, namely, c-Cu2O NPs with {100} facets, o-Cu2O NPs with {111} facets, and t-Cu2O NPs with both {111} and {100} facets, are prepared and their electrocatalytic properties for the reduction of CO2 to C2H4 are evaluated. It is shown that the selectivity and activity of the C2H4 production depend strongly on the crystal facets exposed in Cu2O NPs. The selectivities for the C2H4 production increases in the order, c-Cu2O < o-Cu2O < t-Cu2O, (with FEC2H4 = 38%, 45%, and 59%, respectively). This study suggests that Cu2O NPs are more likely responsible for the selectivity and activity for the C2H4 production than the metallic Cu NPs produced on the surface of Cu2O NPs. This work provides a new route for enhancing the selectivity of the electrocatalytic CO2 reduction by crystal facet engineering.

20.
Molecules ; 25(4)2020 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32079082

RESUMO

The onsite repulsion, spin-orbit coupling and polarizability of elements and their ions play important roles in controlling the physical properties of molecules and condensed materials. In celebration of the 150th birthday of the periodic table this year, we briefly review how these parameters affect the physical properties and are interrelated.


Assuntos
Elétrons , Elementos Químicos , Íons , Periodicidade , Teoria Quântica , Marcadores de Spin , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...