Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 9(9)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514483

RESUMO

Gold clusters protected by 3-MBA ligands (MBA = mercaptobenzoic acid, -SPhCO2H) have attracted recent interest due to their unusual structures and their advantageous ligand-exchange and bioconjugation properties. Azubel et al. first determined the core structure of an Au68-complex, which was estimated to have 32 ligands (3-MBA groups). To explain the exceptional structure-composition and reaction properties of this complex, and its larger homologs, Tero et al. proposed a "dynamic stabilization" via carboxyl O-H--Au interactions. Herein, we report the first results of an integrated liquid chromatography/mass spectrometer (LC/MS) analysis of unfractionated samples of gold/3-MBA clusters, spanning a narrow size range 13.4 to 18.1 kDa. Using high-throughput procedures adapted from bio-macromolecule analyses, we show that integrated capillary high performance liquid chromatography electrospray ionization mass spectrometer (HPLC-ESI-MS), based on aqueous-methanol mobile phases and ion-pairing reverse-phase chromatography, can separate several major components from the nanoclusters mixture that may be difficult to resolve by standard native gel electrophoresis due to their similar size and charge. For each component, one obtains a well-resolved mass spectrum, nearly free of adducts or signs of fragmentation. A consistent set of molecular mass determinations is calculated from detected charge-states tunable from 3- (or lower), to 2+ (or higher). One thus arrives at a series of new compositions (n, p) specific to the Au/3-MBA system. The smallest major component is assigned to the previously unknown (48, 26); the largest one is evidently (67, 30), vs. the anticipated (68, 32). Various explanations for this discrepancy are considered. A prospective is given for the various members of this novel series, along with a summary of the advantages and present limitations of the micro-scale integrated LC/MS approach in characterizing such metallic-core macro-molecules, and their derivatives.

2.
Langmuir ; 35(32): 10610-10617, 2019 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-31299160

RESUMO

Most applications of aqueous plasmonic gold nanoparticles benefit from control of the core size and shape, control of the nature of the ligand shell, and a simple and widely applicable preparation method. Surface functionalization of such nanoparticles is readily achievable but is restricted to water-soluble ligands. Here we have obtained highly monodisperse and stable smaller aqueous gold nanoparticles (core diameter ∼4.5 nm), prepared from citrate-tannate precursors via ligand exchange with each of three distinct thiolates: 11-mercaptoundecanoic acid, α-R-lipoic acid, and para-mercaptobenzoic acid. These are characterized by UV-vis spectroscopy for plasmonic properties; Fourier transform infrared (FTIR) spectroscopy for ligand-exchange confirmation; X-ray diffractometry for structural analysis; and high-resolution transmission electron microscopy for structure and size determination. Chemical reduction induces a blueshift, maximally +0.02 eV, in the localized surface plasmon resonance band; this is interpreted as an electronic (-) charging of the monolayer-protected cluster (MPC) gold core, corresponding to a -0.5 V change in electrochemical potential.

3.
J Phys Chem Lett ; 10(12): 3307-3311, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-31067059

RESUMO

Monolayer-protected clusters (MPCs), typified by the (Au, Ag)-thiolates, share dimensions and masses with aqueous globular proteins (enzymes), yet efficient bioanalytical methods have not proved applicable to MPC analytics. Here we demonstrate that direct facile ESI(+)MS analysis of MPCs succeeds, at the few-picomol level, for aqueous basic amino-terminated thiolates. Specifically, captamino-gold clusters, Au n(SR) p, wherein -R = -(CH2)2N(CH3)2, are prepared quantitatively via a direct one-phase (aq/EtOH) method and are sprayed under weakly acidic conditions to yield intact 6.8 kDa complexes, ( n, p) = (25, 18), with up to 5 H+ adducts, or 34.6 kDa MPCs (144, 60) at charge state z = 8+. These exceed all prior reports of positive charging of MPCs except for those bearing per-cationized (quat) ligands. pH-mediated reversible phase transfer (aqueous to/from DCM-rich phases) are consistent with peripheral exposure of all tertiary amino groups to solutions. This surprising development opens the way to all manner of modifications or extensions, as well as to advanced analyses inspired by those applied to intact biomolecules.

4.
Acc Chem Res ; 52(1): 34-43, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30600992

RESUMO

There exists a special kind of perfection-in symmetry, simplicity, and stability-attainable for structures generated from precisely 60 ligands (all of a single type) that protect 145 metal-atom sites. The symmetry in question is icosahedral ( Ih), generally, and chiral icosahedral ( I) in particular. A 60-fold equivalence of the ligands is the smallest number to allow this kind of perfection. Known cluster compounds that approximate this structural ideal include palladium-carbonyls, Ih-Pd145(CO)60; gold-thiolates, I-Au144(SR)60; and gold-alkynyls, I-Au144(C2R)60. Many other variants are suspected. The Pd145 compound established the basic achiral structure-type. However, the Au144-thiolate archetype is prominent, historically in its abundance and ease of preparation and handling, in its proliferation in many laboratories and application areas, and ultimately in the intrinsic chirality of its geometrical structure and organization of its bonding network or connectivity. As discovered by mass spectrometry (the "30-k anomaly") in 1995, it appeared as a broad single peak, as solitary and symmetrical as Mount Fuji, centered near 30 kDa (∼150 Au atoms), provoking these thoughts: Surely this phenomenon requires a unique explanation. It appears to be the Buckminsterfullerene (carbon-60) of gold-cluster chemistry. Herein we provide an elementary account of the unexpected discovery, in which the Pd145-structure played a critical role, that led to the identification and prediction, in 2008, of a fascinating new molecular structure-type, evidently the first one of chiral icosahedral symmetry. Rigorous confirmation of this prediction occurred in early spring 2018, when two single-crystal X-ray crystallography reports were submitted, each one distinguishing both enantiomeric structures and noting profound chirality for the surface (ligand) layer. The emphasis here is on the structure and bonding principles and how these have been elucidated. Our aim has been to present this story in simplest terms, consistent with the radical simplicity of the structure itself. Because it combines intrinsic profound chirality, at several levels, with the highest possible symmetry-type (icosahedral), the structure may attract broader interest also from educators, especially if studied in tandem with the analysis of hollow (shell) metallic systems that exhibit the same chirality and symmetry. Because the shortest (stiffest) bonds follow the chiral 3-way weave pattern of the traditional South-Asian reed football, this cultural artifact may be used to introduce chiral-icosahedral symmetry in a pleasant and memorable way. One may also appreciate easily the bonding and excitations in I-symmetry metallic nanostructures via the golden fullerenes, that is, the proposed hollow Au60,72 spheres. Beyond any aesthetic or pedagogical value, we aim that our Account may provide a firm foundation upon which others may address open questions and the opportunities they present. This Account can scarcely hint at the prospects for further fundamental understanding of these compounds, as well as a widening sphere of applications (chemical, electronic, imaging). The compounds remain crucial to a wider field presently under intense development.

5.
J Phys Chem Lett ; 9(23): 6825-6832, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30399320

RESUMO

Disclosed herein is a method to obtain the ∼300 kDa gold-hexanethiolate compound, extracted from the Faradaurate series of smaller (3) and larger (1) homologues, thereby permitting the first measurement of its distinctive properties by methods including mass spectrometry, optical spectroscopy, electron microscopy, X-ray scattering, and diffraction. The results suggest a monocrystalline metallic core (free of twinning planes) of ∼3.1 nm minimum dimension, which supports a clear plasmonic optical response, along with a diffuse exterior shell. An idealized model to account for this (and smaller) members of the series is proposed based on the completion of a convex core of regular truncated-octahedral (TO) morphology, that is, the TO (5,5) crystallite comprising 1289 sites. The diffuse layer may comprise the 240 S sites (thiolate sulfur headgroups) and 96 Au-adatom sites, giving a total composition (1385,240) and a molar mass of ∼301.0 kDa (90.7% Au). The ∼300 and ∼400 kDa gold compounds contain Au∼1400 and Au∼2000 atoms, respectively.

6.
J Chem Theory Comput ; 14(12): 6417-6426, 2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30404453

RESUMO

Time-dependent density-functional theory (TDDFT) is widely used for calculating electron excitations in clusters and large molecules. For optical excitations, TDDFT is customarily applied in two distinct approaches: transition-based linear-response TDDFT (LR-TDDFT) and the real-time formalism (RT-TDDFT). The former directly provides the energies and transition densities of the excitations, but it requires the calculation of a large number of empty electron states, which makes it cumbersome for large systems. By contrast, RT-TDDFT circumvents the evaluation of empty orbitals, which is especially advantageous when dealing with large systems. A drawback of the procedure is that information about the nature of individual spectral features is not automatically obtained, although it is of course contained in the time-dependent induced density. Fourier transform of the induced density has been used in some simple cases, but the method is, surprisingly, not widely used to complement the RT-TDDFT calculations; although the reliability of RT-TDDFT spectra is now widely accepted, a critical assessment for the corresponding transition densities and a demonstration of the technical feasibility of the Fourier-transform evaluation for general cases is still lacking. In the present work, we show that the transition densities of the optically allowed excitations can be efficiently extracted from a single δ-kick time-evolution calculation even in complex systems like noble metals. We assess the results by comparison with the corresponding LR-TDDFT ones and also with the induced densities arising from RT-TDDFT simulations of the excitation process.

7.
Chem Sci ; 9(47): 8796-8805, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30647884

RESUMO

For two decades, Au144(SR)60 has been one of the most studied and used thiolate (SR) protected gold nanoclusters. In many ways, however, it proved to be a challenging and elusive case, also because of the difficulties in solving its structure by single-crystal X-ray crystallography. We used very short thiols and could prepare Au144(SC2H5)60 and Au144(SC3H7)60 in a very pure form, which was confirmed by UV-vis absorption spectroscopy and very regular electrochemistry patterns. Inductively coupled plasma and electrospray ionization mass spectrometries gave definite proof of the Au144(SR)60 stoichiometry. High-resolution 1D and 2D NMR spectroscopy in the solution phase provided the result of assessing the presence of 12 ligand types in exactly the same amount (5-fold equivalence). Equally important, we found that the two protons belonging to each methylene group along the thiolate chain are diastereotopic. For the α-CH2 protons, the diastereotopic effect can be indeed gigantic, as it reaches chemical-shift differences of 2.9 ppm. DFT calculations provided insights into the relationship between structure and NMR results. In particular, the 12 ligand types and corresponding diastereotopic effects may be explained by considering the presence of C-H···S hydrogen bonds. These results thus provide fundamental insights into the structure of the thiolate layer capping this long-studied gold nanocluster.

8.
Anal Chem ; 90(3): 2010-2017, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29260853

RESUMO

Evidence for the existence of condensed-phase isomers of silver-lipoate clusters, Ag29(LA)12, where LA = (R)-α lipoic acid, was obtained by reversed-phase ion-pair liquid chromatography with in-line UV-vis and electrospray ionization (ESI)-MS detection. All components of a raw mixture were separated according to surface chemistry and increasing size via reversed-phase gradient HPLC methods and identified by their corresponding m/z ratio by ESI in the negative ionization mode. Aqueous and methanol mobile-phase mixtures, each containing 400 mM hexafluoroisopropanol (HFIP)-15 mM triethylamine (TEA), were employed to facilitate the interaction between the clusters and stationary phase via formation of ion-pairs. TEA-HFIP (triethylammonium-hexafluoroisopropoxide) had been shown to provide superior chromatographic peak shape and mass spectral signal compared with alternative modifiers such as TEAA (triethylammonium-acetate) for analysis of oligonucleotide samples. Liquid chromatographic separation prior to mass spectrometry detection facilitated sample analysis by production of simplified mass spectra for each eluting cluster species and provided insight into the existence of at least two major solution-phase isomers of Ag29(LA)12. UV-vis detection in-line with ESI analysis provided independent confirmation of the existence of the isomers and their similar electronic structure as judged from their identical optical spectra in the 300-500 nm range. [Diastereomerism provides a possible interpretation for the near-equal abundance of the two forms, based on a structurally defined nonaqueous homologue.].


Assuntos
Nanoestruturas/química , Prata/química , Ácido Tióctico/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Isomerismo , Soluções , Espectrometria de Massas por Ionização por Electrospray/métodos
9.
J Phys Chem Lett ; 8(22): 5523-5530, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29072840

RESUMO

Solving the atomic structure of metallic clusters is fundamental to understanding their optical, electronic, and chemical properties. Herein we present the structure of the largest aqueous gold cluster, Au146(p-MBA)57 (p-MBA: para-mercaptobenzoic acid), solved by electron micro-diffraction (MicroED) to subatomic resolution (0.85 Å) and by X-ray diffraction at atomic resolution (1.3 Å). The 146 gold atoms may be decomposed into two constituent sets consisting of 119 core and 27 peripheral atoms. The core atoms are organized in a twinned FCC structure, whereas the surface gold atoms follow a C2 rotational symmetry about an axis bisecting the twinning plane. The protective layer of 57 p-MBAs fully encloses the cluster and comprises bridging, monomeric, and dimeric staple motifs. Au146(p-MBA)57 is the largest cluster observed exhibiting a bulk-like FCC structure as well as the smallest gold particle exhibiting a stacking fault.

10.
J Phys Chem Lett ; 8(6): 1283-1289, 2017 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-28234006

RESUMO

We report the first results of ultraviolet photodissociation (UVPD) mass spectrometry of trapped monolayer-protected cluster (MPC) ions generated by electrospray ionization. Gold clusters Au25(pMBA)18 and Au36(pMBA)24 (pMBA = para-mercaptobenzoic acid) were analyzed in both the positive and negative modes. Whereas activation methods including collisional- and electron-based methods produced relatively few fragment ions, even a single ultraviolet pulse (at λ = 193 nm) caused extensive fragmentation of the positively charged clusters. Upon photoactivation using a low number of laser pulses, the staple motifs of both clusters were cleaved and stripped of the protecting ligand portions without removal of any contained gold atoms. This striking process involved Au-S and C-S bond cleavages via a pathway made possible by 6.4 eV photon absorption. Monomer evaporation (neutral gold atom loss) occurred upon exposure to multiple pulses, resulting in a size series of bare gold-cluster ions. All tandem mass spectrometric methods produced the singly charged ring tetramer ion, [Au4(pMBA)4 + Na]+, for each cluster.

12.
J Phys Chem Lett ; 7(19): 3718-3722, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27588345

RESUMO

Although many thiolate-protected Au clusters with different numbers of Au atoms and a variety of thiolate ligands have been synthesized, to date there has been no report of a fully cationized Au cluster protected with cationic thiolates. Herein, we report the synthesis of the first member of a new series of thiolate-protected Au cluster molecules: a fully cationized Au25(SR+)18 cluster.

13.
J Phys Chem Lett ; 7(16): 3199-205, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27476322

RESUMO

Recent advances in cluster synthesis make it possible to produce an enormous variety molecule-like MPCs of size, composition, shape, and surface-chemical combinations. In contrast to the significant growth in the synthetic capability to generate these materials, progress in establishing the physicochemical basis for their observed properties has remained limited. The main reason for this has been the lack of the analytical capability to generate and measure samples of suitably high (molecular) purity; such capability is also essential to support therapeutic and diagnostic MPC development. In order for MPC products to get to market, especially those products that are medical-field related, characterization is required to identify and quantify all components present in a material mixture. Here, we show results from analysis of several synthetic mixtures of gold MPCs by nonaqueous reversed-phase chromatography coupled with mass spectrometry detection. The additional or hidden components, revealed to be present in these mixtures, provide novel insights into their comparative stability and interactions.

14.
J Phys Chem B ; 120(26): 6430-8, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27275518

RESUMO

Experimental and theoretical evidence reveals the resilience and stability of the larger aqueous gold clusters protected with p-mercaptobenzoic acid ligands (pMBA) of composition Aun(pMBA)p or (n, p). The Au144(pMBA)60, (144, 60), or gold-144 aqueous gold cluster is considered special because of its high symmetry, abundance, and icosahedral structure as well as its many potential uses in material and biological sciences. Yet, to this date, direct confirmation of its precise composition and total structure remains elusive. Results presented here from characterization via high-resolution electrospray ionization mass spectrometry on an Orbitrap instrument confirm Au102(pMBA)44 at isotopic resolution. Further, what usually appears as a single band for (144, 60) in electrophoresis (PAGE) is shown to also contain the (130, 50), recently determined to have a truncated-decahedral structure, and a (137, 56) component in addition to the dominant (144, 60) compound of chiral-icosahedral structure. This finding is significant in that it reveals the existence of structures never before observed in all-aromatic water-soluble species while pointing out the path toward elucidation of the thermodynamic control of protected gold nanocrystal formation.


Assuntos
Benzoatos/química , Ouro/química , Compostos de Sulfidrila/química , Eletroforese em Gel de Poliacrilamida , Íons/química , Modelos Químicos , Prótons , Sódio/química , Espectrometria de Massas por Ionização por Electrospray , Água/química
15.
Anal Chem ; 88(11): 5631-6, 2016 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-27216373

RESUMO

In some respects, large noble-metal clusters protected by thiolate ligands behave as giant molecules of definite composition and structure; however, their rigorous analysis continues to be quite challenging. Analysis of complex mixtures of intact monolayer-protected clusters (MPCs) by liquid chromatography mass spectrometry (LC-MS) could provide quantitative identification of the various components present. This advance is critical for biomedical and toxicological research, as well as in fundamental studies that rely on the identification of selected compositions. This work expands upon the separate LC and MS results previously achieved, by interfacing the capillary liquid chromatograph directly to the electrospray source of the mass spectrometer, in order to provide an extremely sensitive, quantitative, and rapid means to characterize MPCs and their derivatives far beyond that of earlier reports. Here, we show that nonaqueous reversed-phase chromatography can be coupled to mass-spectrometry detection to resolve complex mixtures in minute (∼100 ng) samples of gold MPCs, of molecular masses up to ∼40 kDa, and with single-species sensitivity easily demonstrated for components on the level of sub-10 ng or picomole (1 pmol).


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Cromatografia Líquida , Eletrólitos , Espectrometria de Massas
16.
ACS Nano ; 10(1): 188-98, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26605557

RESUMO

The alloy Au-Ag system is an important noble bimetallic phase, both historically (as "Electrum") and now especially in nanotechnology, as it is applied in catalysis and nanomedicine. To comprehend the structural characteristics and the thermodynamic stability of this alloy, a knowledge of its phase diagram is required that considers explicitly its size and shape (morphology) dependence. However, as the experimental determination remains quite challenging at the nanoscale, theoretical guidance can provide significant advantages. Using a regular solution model within a nanothermodynamic approach to evaluate the size effect on all the parameters (melting temperature, melting enthalpy, and interaction parameters in both phases), the nanophase diagram is predicted. Besides an overall shift downward, there is a "tilting" effect on the solidus-liquidus curves for some particular shapes exposing the (100) and (110) facets (cube, rhombic dodecahedron, and cuboctahedron). The segregation calculation reveals the preferential presence of silver at the surface for all the polyhedral shapes considered, in excellent agreement with the latest transmission electron microscopy observations and energy dispersive spectroscopy analysis. By reviewing the nature of the surface segregated element of different bimetallic nanoalloys, two surface segregation rules, based on the melting temperatures and surface energies, are deduced. Finally, the optical properties of Au-Ag nanoparticles, calculated within the discrete dipole approximation, show the control that can be achieved in the tuning of the local surface plasmon resonance, depending of the alloy content, the chemical ordering, the morphology, the size of the nanoparticle, and the nature of the surrounding environment.


Assuntos
Ligas/química , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanotecnologia , Tamanho da Partícula , Transição de Fase , Ressonância de Plasmônio de Superfície , Temperatura , Termodinâmica
17.
J Phys Chem B ; 119(50): 15502-8, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26581232

RESUMO

Nanometer-sized gold particles (AuNPs) are of peculiar interest because their behaviors in an aqueous solution are sensitive to changes in environmental factors including the size and shape of the solute ions. In order to determine these important characteristics, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates (4-mercaptobenzoate, pMBA) in eight aqueous solutions having ions of varying sizes and shapes (Na(+), K(+), tetramethylamonium cation TMA(+), tris-ammonium cation TRS(+), Cl(-), and OH(-)). For each solution, we computed the reversible work (potential of mean of force) to bring two nanoparticles together as a function of their separation distance. We found that the behavior of pMBA protected Au144 nanoparticles can be readily modulated by tuning their aqueous environmental factors (pH and solute ion combinations). We examined the atomistic details on how the sizes and shapes of solute ions quantitatively factor in the definitive characteristics of nanoparticle-environment and nanoparticle-nanoparticle interactions. We predict that tuning the concentrations of nonspherical composite ions such as TRS(+) in an aqueous solution of AuNPs be an effective means to modulate the aggregation propensity desired in biomedical and other applications of small charged nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Soluções , Água
18.
Phys Chem Chem Phys ; 17(5): 3680-8, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25556346

RESUMO

In order to determine how functionalized gold nanoparticles (AuNPs) interact in a near-physiological environment, we performed all-atom molecular dynamics simulations on the icosahedral Au144 nanoparticles each coated with a homogeneous set of 60 thiolates selected from one of these five (5) types: 11-mercapto-1-undecanesulfonate -SC11H22(SO3(-)), 5-mercapto-1-pentanesulfonate -SC5H10(SO3(-)), 5-mercapto-1-pentaneamine -SC5H10(NH3(+)), 4-mercapto-benzoate -SPh(COO(-)), or 4-mercapto-benzamide -SPh(CONH3(+)). These thiolates were selected to elucidate how the aggregation behavior of AuNPs depends on ligand parameters, including the charge of the terminal group (anionic vs. cationic), and its length and conformational flexibility. For this purpose, each functionalized AuNP was paired with a copy of itself, placed in an aqueous cell, neutralized by 120 Na(+)/Cl(-) counter-ions and salinated with a 150 mM concentration of NaCl, to form five (5) systems of like-charged AuNPs pairs in a saline. We computed the potential of mean force (the reversible work of separation) as a function of the intra-pair distance and, based on which, the aggregation affinities. We found that the AuNPs coated with negatively charged, short ligands have very high affinities. Structurally, a significant number of Na(+) counter-ions reside on a plane between the AuNPs, mediating the interaction. Each such ion forms a "salt bridge" (or "ionic bonds") to both of the AuNPs when they are separated by its diameter plus 0.2-0.3 nm. The positively charged AuNPs have much weaker affinities, as Cl(-) counter-ions form fewer and weaker salt bridges between the AuNPs. In the case of Au144(SC11H22(SO3(-)))60 pair, the flexible ligands fluctuate much more than the other four cases. The large fluctuations disfavor the forming of salt bridges between two AuNPs, but enable hydrophobic contact between the exposed hydrocarbon chains of the two AuNPs, which are subject to an effective attraction at a separation much greater than the AuNP diameter and involve a higher concentration of counter ions in the inter-pair space.


Assuntos
Ouro/química , Ligantes , Nanopartículas Metálicas/química , Concentração de Íons de Hidrogênio , Íons/química , Simulação de Dinâmica Molecular , Cloreto de Sódio/química , Compostos de Sulfidrila/química , Termodinâmica
19.
J Phys Chem A ; 118(45): 10679-87, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25317476

RESUMO

Gas-phase reactions of larger gold clusters are poorly known because generation of the intact parent species for mass spectrometric analysis remains quite challenging. Herein we report in-source collision-induced dissociation (CID) results for the monolayer protected clusters (MPCs) Au144(SR)60 and Au130(SR)50, where R- = PhCH2CH2-, in a Bruker micrOTOF time-of-flight mass spectrometer. A sample mixture of the two clusters was introduced into the mass spectrometer by positive mode electrospray ionization. Standard source conditions were used to acquire a reference mass spectrum, exhibiting negligible fragmentation, and then the capillary-skimmer potential difference was increased to induce in-source CID within this low-pressure region (∼4 mbar). Remarkably, distinctive fragmentation patterns are observed for each MPC[3+] parent ion. An assignment of all the major dissociation products (ions and neutrals) is deduced and interpreted by using the distinguishing characteristics in the standard structure-models for the respective MPCs. Also, we propose a ring-forming elimination mechanism to explain R-H neutral loss, as separate from the channels leading to RS-SR or (AuSR)4 neutrals.


Assuntos
Compostos de Ouro/química , Nanoestruturas/química , Espectrometria de Massas por Ionização por Electrospray , Estrutura Molecular
20.
Nano Lett ; 14(11): 6718-26, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25338111

RESUMO

Gold-copper (Au-Cu) phases were employed already by pre-Columbian civilizations, essentially in decorative arts, whereas nowadays, they emerge in nanotechnology as an important catalyst. The knowledge of the phase diagram is critical to understanding the performance of a material. However, experimental determination of nanophase diagrams is rare because calorimetry remains quite challenging at the nanoscale; theoretical investigations, therefore, are welcomed. Using nanothermodynamics, this paper presents the phase diagrams of various polyhedral nanoparticles (tetrahedron, cube, octahedron, decahedron, dodecahedron, rhombic dodecahedron, truncated octahedron, cuboctahedron, and icosahedron) at sizes 4 and 10 nm. One finds, for all the shapes investigated, that the congruent melting point of these nanoparticles is shifted with respect to both size and composition (copper enrichment). Segregation reveals a gold enrichment at the surface, leading to a kind of core-shell structure, reminiscent of the historical artifacts. Finally, the most stable structures were determined to be the dodecahedron, truncated octahedron, and icosahedron with a Cu-rich core/Au-rich surface. The results of the thermodynamic approach are compared and supported by molecular-dynamics simulations and by electron-microscopy (EDX) observations.


Assuntos
Cobre/química , Ligas de Ouro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Simulação de Dinâmica Molecular , Nanotecnologia , Tamanho da Partícula , Transição de Fase , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA