Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 2557, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186421

RESUMO

Facial recognition from DNA refers to the identification or verification of unidentified biological material against facial images with known identity. One approach to establish the identity of unidentified biological material is to predict the face from DNA, and subsequently to match against facial images. However, DNA phenotyping of the human face remains challenging. Here, another proof of concept to biometric authentication is established by using multiple face-to-DNA classifiers, each classifying given faces by a DNA-encoded aspect (sex, genomic background, individual genetic loci), or by a DNA-inferred aspect (BMI, age). Face-to-DNA classifiers on distinct DNA aspects are fused into one matching score for any given face against DNA. In a globally diverse, and subsequently in a homogeneous cohort, we demonstrate preliminary, but substantial true (83%, 80%) over false (17%, 20%) matching in verification mode. Consequences of future efforts include forensic applications, necessitating careful consideration of ethical and legal implications for privacy in genomic databases.


Assuntos
Identificação Biométrica , Face/anatomia & histologia , Reconhecimento Facial , Genótipo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estatura , Peso Corporal , Estudos de Coortes , Bases de Dados de Ácidos Nucleicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
3.
Sci Rep ; 9(1): 6085, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988365

RESUMO

Dense surface registration, commonly used in computer science, could aid the biological sciences in accurate and comprehensive quantification of biological phenotypes. However, few toolboxes exist that are openly available, non-expert friendly, and validated in a way relevant to biologists. Here, we report a customizable toolbox for reproducible high-throughput dense phenotyping of 3D images, specifically geared towards biological use. Given a target image, a template is first oriented, repositioned, and scaled to the target during a scaled rigid registration step, then transformed further to fit the specific shape of the target using a non-rigid transformation. As validation, we use n = 41 3D facial images to demonstrate that the MeshMonk registration is accurate, with 1.26 mm average error, across 19 landmarks, between placements from manual observers and using the MeshMonk toolbox. We also report no variation in landmark position or centroid size significantly attributable to landmarking method used. Though validated using 19 landmarks, the MeshMonk toolbox produces a dense mesh of vertices across the entire surface, thus facilitating more comprehensive investigations of 3D shape variation. This expansion opens up exciting avenues of study in assessing biological shapes to better understand their phenotypic variation, genetic and developmental underpinnings, and evolutionary history.

4.
Proc Natl Acad Sci U S A ; 116(5): 1633-1638, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30647112

RESUMO

Recent studies have called into question the idea that facial masculinity is a condition-dependent male ornament that indicates immunocompetence in humans. We add to this growing body of research by calculating an objective measure of facial masculinity/femininity using 3D images in a large sample (n = 1,233) of people of European ancestry. We show that facial masculinity is positively correlated with adult height in both males and females. However, facial masculinity scales with growth similarly in males and females, suggesting that facial masculinity is not exclusively a male ornament, as male ornaments are typically more sensitive to growth in males compared with females. Additionally, we measured immunocompetence via heterozygosity at the major histocompatibility complex (MHC), a widely-used genetic marker of immunity. We show that, while height is positively correlated with MHC heterozygosity, facial masculinity is not. Thus, facial masculinity does not reflect immunocompetence measured by MHC heterozygosity in humans. Overall, we find no support for the idea that facial masculinity is a condition-dependent male ornament that has evolved to indicate immunocompetence.


Assuntos
Face/fisiologia , Complexo Principal de Histocompatibilidade/fisiologia , Adolescente , Adulto , Beleza , Comportamento de Escolha/fisiologia , Feminino , Heterozigoto , Humanos , Imunocompetência/fisiologia , Masculino , Masculinidade , Fenômenos Fisiológicos/fisiologia , Caracteres Sexuais , Comportamento Sexual/fisiologia , Adulto Jovem
5.
PLoS One ; 13(12): e0207895, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30586353

RESUMO

Perfect bilateral symmetry is the optimal outcome of the development of bilateral traits in the absence of developmental perturbations. Any random perturbation in this perfect symmetrical state is called Fluctuating Asymmetry (FA). Many studies have been conducted on FA as an indicator of Developmental Instability (DI) and its possible link with stress and individual quality in general and with attractiveness, health and level of masculinity or femininity in humans. Most human studies of facial asymmetry use 2D pictures and a limited number of landmarks. We developed a protocol to utilize high-density 3D scans of human faces to measure the level of asymmetry. A completely symmetric spatially dense anthropometric mask with paired vertices is non-rigidly mapped on target faces using an Iterative Closest Point (ICP) registration algorithm. A set of 19 manually indicated landmarks were used to validate the mapping precision. The protocol's accuracy in FA calculation is assessed, and results show that a spatially dense approach is more accurate. In addition, it generates an integrated asymmetry estimate across the entire face. Finally, the automatic nature of the protocol provides a great advantage by omitting the tedious step of manual landmark indication on the biological structure of interest.


Assuntos
Antropometria/métodos , Face/diagnóstico por imagem , Face/fisiologia , Assimetria Facial/diagnóstico por imagem , Assimetria Facial/patologia , Imagem Tridimensional/métodos , Adolescente , Adulto , Algoritmos , Feminino , Humanos , Imagem Tridimensional/estatística & dados numéricos , Masculino , Adulto Jovem
6.
Front Genet ; 9: 497, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30405702

RESUMO

Many factors influence human facial morphology, including genetics, age, nutrition, biomechanical forces, and endocrine factors. Moreover, facial features clearly differ between males and females, and these differences are driven primarily by the influence of sex hormones during growth and development. Specific genetic variants are known to influence circulating sex hormone levels in humans, which we hypothesize, in turn, affect facial features. In this study, we investigated the effects of testosterone-related genetic variants on facial morphology. We tested 32 genetic variants across 22 candidate genes related to levels of testosterone, sex hormone-binding globulin (SHGB) and dehydroepiandrosterone sulfate (DHEAS) in three cohorts of healthy individuals for which 3D facial surface images were available (Pittsburgh 3DFN, Penn State and ALSPAC cohorts; total n = 7418). Facial shape was described using a recently developed extension of the dense-surface correspondence approach, in which the 3D facial surface was partitioned into a set of 63 hierarchically organized modules. Each variant was tested against each of the facial surface modules in a multivariate genetic association-testing framework and meta-analyzed. Additionally, the association between these candidate SNPs and five facial ratios was investigated in the Pittsburgh 3DFN cohort. Two significant associations involving intronic variants of SHBG were found: both rs12150660 (p = 1.07E-07) and rs1799941 (p = 6.15E-06) showed an effect on mandible shape. Rs8023580 (an intronic variant of NR2F2-AS1) showed an association with the total and upper facial width to height ratios (p = 9.61E-04 and p = 7.35E-04, respectively). These results indicate that testosterone-related genetic variants affect normal-range facial morphology, and in particular, facial features known to exhibit strong sexual dimorphism in humans.

7.
Front Genet ; 9: 502, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30410503

RESUMO

Objectives: Orofacial clefting is one of the most prevalent craniofacial malformations. Previous research has demonstrated that unaffected relatives of patients with non-syndromic cleft lip with/without cleft palate (NSCL/P) show distinctive facial features, which can be an expression of underlying NSCL/P susceptibility genes. These results support the hypothesis that genes involved in the occurrence of a cleft also play a role in normal craniofacial development. In this study, we investigated the influence of genetic variants associated with NSCL/P on normal-range variation in facial shape. Methods: A literature review of genome wide association studies (GWAS) investigating the genetic etiology of NSCL/P was performed, resulting in a list of 75 single nucleotide polymorphisms (SNPs) located in 38 genetic loci. Genotype data were available for 65 of these selected SNPs in three datasets with a combined sample size of 7,418 participants of European ancestry, whose 3D facial images were also available. The effect of each SNP was tested using a multivariate canonical correlation analysis (CCA) against 63 hierarchically-constructed facial segments in each of the three datasets and meta-analyzed. This allowed for the investigation of associations between SNPs known to be involved in NSCL/P and normal-range facial shape variations in a global-to-local perspective, without preselecting specific facial shape features or characteristics. Results: Six NSCL/P SNPs showed significant associations with variation in normal-range facial morphology. rs6740960 showed significant effects in the chin area (p = 3.71 × 10-28). This SNP lies in a non-coding area. Another SNP, rs227731 near the NOG gene, showed a significant effect in the philtrum area (p = 1.96 × 10-16). Three SNPs showed significant effects on the shape of the nose. rs742071 (p = 8.71 × 10-14), rs34246903 (p = 6.87 × 10-12), and rs10512248 (p = 8.4 × 10-9). Respectively, these SNPs are annotated to PAX7, MSX1, and PTCH1. Finally, rs7590268, an intron variant of THADA, showed an effect in the shape of the supraorbital ridge (p = 3.84 × 10-7). Conclusions: This study provides additional evidence NSCL/P-associated genetic variants influence normal-range craniofacial morphology, with significant effects observed for the chin, the nose, the supraorbital ridges and the philtrum area.

8.
Nat Genet ; 50(3): 414-423, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29459680

RESUMO

Genome-wide association scans of complex multipartite traits like the human face typically use preselected phenotypic measures. Here we report a data-driven approach to phenotyping facial shape at multiple levels of organization, allowing for an open-ended description of facial variation while preserving statistical power. In a sample of 2,329 persons of European ancestry, we identified 38 loci, 15 of which replicated in an independent European sample (n = 1,719). Four loci were completely new. For the others, additional support (n = 9) or pleiotropic effects (n = 2) were found in the literature, but the results reported here were further refined. All 15 replicated loci highlighted distinctive patterns of global-to-local genetic effects on facial shape and showed enrichment for active chromatin elements in human cranial neural crest cells, suggesting an early developmental origin of the facial variation captured. These results have implications for studies of facial genetics and other complex morphological traits.

9.
Nucleic Acids Res ; 45(2): 711-725, 2017 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-27694622

RESUMO

Homologous recombination (HR) is a template-driven repair pathway that mends DNA double-stranded breaks (DSBs), and thus helps to maintain genome stability. The RAD51 recombinase facilitates DNA joint formation during HR, but to accomplish this task, RAD51 must be loaded onto the single-stranded DNA. DSS1, a candidate gene for split hand/split foot syndrome, provides the ability to recognize RPA-coated ssDNA to the tumor suppressor BRCA2, which is complexed with RAD51. Together BRCA2-DSS1 displace RPA and load RAD51 onto the ssDNA. In addition, the BRCA2 interacting protein BCCIP normally colocalizes with chromatin bound BRCA2, and upon DSB induction, RAD51 colocalizes with BRCA2-BCCIP foci. Down-regulation of BCCIP reduces DSB repair and disrupts BRCA2 and RAD51 foci formation. While BCCIP is known to interact with BRCA2, the relationship between BCCIP and RAD51 is not known. In this study, we investigated the biochemical role of the ß-isoform of BCCIP in relation to the RAD51 recombinase. We demonstrate that BCCIPß binds DNA and physically and functionally interacts with RAD51 to stimulate its homologous DNA pairing activity. Notably, this stimulatory effect is not the result of RAD51 nucleoprotein filament stabilization; rather, we demonstrate that BCCIPß induces a conformational change within the RAD51 filament that promotes release of ADP to help maintain an active presynaptic filament. Our findings reveal a functional role for BCCIPß as a RAD51 accessory factor in HR.


Assuntos
Difosfato de Adenosina/metabolismo , Pareamento de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Recombinação Homóloga , Proteínas Nucleares/metabolismo , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ciclo Celular/química , Reparo do DNA , Humanos , Hidrólise , Proteínas Nucleares/química , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas , Multimerização Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA