Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Environ Pollut ; 287: 117651, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426396

RESUMO

Antibiotic resistance in aquatic ecosystems presents an environmental health issue worldwide. Urban recipient water quality is susceptible to effluent discharges with antibiotic resistance contaminants and needs to be protected, particularly for those as sources of drinking water production. Knowledge on aquatic resistome profiles in downstream of wastewater treatment plants allows a better understanding of the extent to which antibiotic resistance contaminants emerge and spread in recipient waters, but such information remains very limited in Sweden. The key objective of this study was to determine the resistome profiles of numerous antibiotic resistance genes (ARGs), mobile genetic elements (MGEs) and other genes in urban recipient water systems connected to Sweden's major drinking water reservoir. This was achieved through analysis of surface water samples for 296 genes using high-throughput quantitative PCR arrays. A total of 167 genes were detected in at least one of the samples, including 150 ARGs conferring resistance to 11 classes of antibiotics, 7 integrase MGEs and 9 other genes. There was a spatial difference in the resistome profiles with the greatest average relative abundance of resistance genes observed in the water body of Västerås followed by Uppsala, Stockholm and Eskilstuna, as similar to the general pattern of the antibiotic sales for these regions. ARGs against ß-lactams and sulfonamides showed the highest average relative abundance in the studied water bodies, while vancomycin resistance genes were only found in the Uppsala water environment. Generally, the recipient water bodies were detected with higher numbers of genes and greater relative abundances as compared to the upstream sites. Anthropogenic pollution, i.e., wastewater discharge, in the recipient water was also reflected by the finding of intI, sul1 and crAssphage. Overall, this study provided the first quantitative assessment of aquatic environmental resistomes in Sweden, highlighting the widespread of antibiotic resistance contaminants in urban recipient waters.


Assuntos
Antibacterianos , Genes Bacterianos , Ecossistema , Reação em Cadeia da Polimerase , Suécia , Águas Residuárias
2.
Environ Pollut ; 289: 117910, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426193

RESUMO

Soil samples from a contaminated site in Sweden were analyzed to identify the presence of 78 polycyclic aromatic compounds (PACs) using gas chromatography coupled with mass spectrometry (GC-MS). The target analysis revealed large contributions not only from polycyclic aromatic hydrocarbons (PAHs), but also from alkylated- and oxygenated-PAHs (alkyl- and oxy-PAHs, respectively), and N-heterocyclics (NPACs). PAC profiles indicated primarily pyrogenic sources, although contribution of petrogenic sources was also observed in one sample as indicated by a high ratio of alkylated naphthalene compared to naphthalene. The aryl hydrocarbon receptor (AhR)-activity of the soil extracts was assessed using the H4IIe-pGudluc 1.1 cells bioassay. When compared with the calculated total AhR-activity of the PACs in the target list, 35-97% of the observed bioassay activity could be explained by 62 PACs with relative potency factors (REPs). The samples were further screened using GC coupled with Orbitrap™ high resolution MS (GC-HRMS) to investigate the presence of other PACs that could potentially contribute to the AhR-activity of the extracts. 114 unique candidate compounds were tentatively identified and divided into four groups based on their AhR-activity and environmental occurrence. Twelve substances satisfied all the criteria, and these compounds are suggested to be included in regular screening in future studies, although their identities were not confirmed by standards in this study. High unexplained bio-TEQ fractions in three of the samples may be explained by tentatively identified compounds (n = 35) with high potential of being toxic. This study demonstrates the benefit of combining targeted and non-targeted chemical analysis with bioassay analysis to assess the diversity and effects of PACs at contaminated sites. The applied prioritization strategy revealed a number of tentatively identified compounds, which likely contributed to the overall bioactivity of the soil extracts.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Bioensaio , Monitoramento Ambiental , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo
3.
Environ Sci Technol ; 55(15): 10343-10353, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34291901

RESUMO

Pesticides are widespread anthropogenic chemicals and well-known environmental contaminants of concern. Much less is known about transformation products (TPs) of pesticides and their presence in the environment. We developed a novel suspect screening approach for not well-explored pesticides (n = 16) and pesticide TPs (n = 242) by integrating knowledge from national monitoring with high-resolution mass spectrometry data. Weekly time-integrated samples were collected in two Swedish agricultural streams using the novel Time-Integrating, MicroFlow, In-line Extraction (TIMFIE) sampler. The integration of national monitoring data in the screening approach increased the number of prioritized compounds approximately twofold (from 23 to 42). Ultimately, 11 pesticide TPs were confirmed by reference standards and 12 TPs were considered tentatively identified with varying levels of confidence. Semiquantification of the newly confirmed TPs indicated higher concentrations than their corresponding parent pesticides in some cases, which highlights concerns related to (unknown) pesticide TPs in the environment. Some TPs were present in the environment without co-occurrence of their corresponding parent compounds, indicating higher persistency or mobility of the identified TPs. This study showcased the benefits of integrating monitoring knowledge in this type of studies, with advantages for suspect screening performance and the possibility to increase relevance of future monitoring programs.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental , Praguicidas/análise , Água , Poluentes Químicos da Água/análise
4.
Chemosphere ; 279: 130923, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134442

RESUMO

Historical use of organochlorine pesticides (OCPs) in the Republic of Moldova could pose a potential risk for the aquatic environment due to the persistence, bioaccumulation and toxic properties of these environmental pollutants. However, knowledge on environmental concentrations of legacy OCPs in Moldova is limited. In this study, surface sediment from the two main rivers; Dniester (8 sites, n = 15) and Prut (6 sites, n = 12), and two tributary rivers; Bîc (11 sites, n = 11) and Raut (6 sites, n = 6), were collected during 2017-2018 and analyzed for hexachlorocyclohexanes (HCHs), dichlorodiphenyltrichloroethanes (DDTs) and their transformation products (DDDs and DDEs) using gas chromatography coupled to mass spectrometry (GC-MS/MS). Sediment concentrations of Æ©6DDX (1.9-140 ng g-1 dry weight (dw)) and Æ©4HCHs (n.d-2.5 ng g-1 dw) were found. In the big rivers, the average Æ©6DDX concentration (18 ng g-1 dw) were 35 times higher than Æ©4HCHs (0.51 ng g-1 dw). Whereas, in the small rivers the average Æ©6DDX concentration (32 ng g-1 dw) was approximately 41 times higher than Æ©4HCHs (0.77 ng g-1 dw). Compared to previous studies from Eastern Europe, the sediment levels were generally similar as found in Moldova's neighboring countries (Romania and Ukraine). Overall, the contamination profile indicates long-term ageing of OCPs used in the past in the agricultural sector. Less than half of the sites (45%) had levels that pose a potential risk for benthic organisms. Hence, further work is needed to determine the bioaccumulation of OCPs in the aquatic food web in this region and the associated risks to ecosystems and human health.


Assuntos
Hidrocarbonetos Clorados , Praguicidas , Poluentes Químicos da Água , China , Ecossistema , Monitoramento Ambiental , Europa Oriental , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos , Humanos , Hidrocarbonetos Clorados/análise , Moldávia , Praguicidas/análise , Rios , Romênia , Espectrometria de Massas em Tandem , Ucrânia , Poluentes Químicos da Água/análise
5.
Sci Rep ; 11(1): 13510, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188128

RESUMO

Consumption of illicit drugs poses health risks to the public and environment. Knowledge on their usage helps better implementations of intervention strategies to reduce drug-related harms in the society and also policies to limit their releases as emerging contaminants to recipient environments. This study aimed to investigate from the daily consumption to treatment efficiency and subsequent discharge of illicit drugs by the Swedish urban populations based on simultaneous collection and analysis of influent and effluent wastewater. Two different weekly monitoring campaigns showed similar drug prevalence in Stockholm and Uppsala, with amphetamine as the most popular drug. Almost all target drug residues were still measurable in effluent wastewater. High removal efficiencies (> 94%) were observed for amphetamine, cocaine and benzoylecgonine, whereas ketamine, 3,4-methylenedioxymethamphetamine (MDMA), mephedrone and methamphetamine were the least removed substances (< 64%), with the highest discharge observed for MDMA in both catchments (~ 3.0 g/day in Uppsala; ~ 18 g/day in Stockholm). Our study provides new insights into short-term changes in the use and related discharge of illicit drugs by urban populations. Such wastewater monitoring can provide useful information to public health, forensic and environmental authorities in planning future intervention and regulation policies.

6.
Chemosphere ; 280: 130799, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162120

RESUMO

Ion mobility separation (IMS) coupled to high resolution mass spectrometry (IMS-HRMS) is a promising technique for (non-)target/suspect analysis of micropollutants in complex matrices. IMS separates ionized compounds based on their charge, shape and size facilitating the removal of co-eluting isomeric/isobaric species. Additionally, IMS data can be translated into collision cross-section (CCS) values, which can be used to increase the identification reliability. However, IMS-HRMS for the screening of contaminants of emerging concern (CECs) have been scarcely explored. In this study, the role of IMS-HRMS for the identification of CECs in complex matrices is highlighted, with emphasis on when and with which purpose is of use. The utilization of IMS can result in much cleaner mass spectra, which considerably facilitates data interpretation and the obtaining of reliable identifications. Furthermore, the robustness of IMS measurements across matrices permits the use of CCS as an additional relevant parameter during the identification step even when reference standards are not available. Moreover, an effect on the number of true and false identifications could be demonstrated by including IMS restrictions within the identification workflow. Data shown in this work is of special interest for environmental researchers dealing with the detection of CECs with state-of-the-art IMS-HRMS instruments.


Assuntos
Espectrometria de Mobilidade Iônica , Isomerismo , Espectrometria de Massas , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
Water Res ; 198: 117099, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33930794

RESUMO

There is growing worry that drinking water can be affected by contaminants of emerging concern (CECs), potentially threatening human health. In this study, a wide range of CECs (n = 177), including pharmaceuticals, pesticides, perfluoroalkyl substances (PFASs) and other compounds, were analysed in raw water and in drinking water collected from drinking water treatment plants (DWTPs) in Europe and Asia (n = 13). The impact of human activities was reflected in large numbers of compounds detected (n = 115) and high variation in concentrations in the raw water (range 15-7995 ng L-1 for ∑177CECs). The variation was less pronounced in drinking water, with total concentration ranging from 35 to 919 ng L-1. Treatment efficiency was on average 65 ± 28%, with wide variation between different DWTPs. The DWTP with the highest ∑CEC concentrations in raw water had the most efficient treatment procedure (average treatment efficiency 89%), whereas the DWTP with the lowest ∑177CEC concentration in the raw water had the lowest average treatment efficiency (2.3%). Suspect screening was performed for 500 compounds ranked high as chemicals of concern for drinking water, using a prioritisation tool (SusTool). Overall, 208 features of interest were discovered and three were confirmed with reference standards. There was co-variation between removal efficiency in DWTPs for the target compounds and the suspected features detected using suspect screening, implying that removal of known contaminants can be used to predict overall removal of potential CECs for drinking water production. Our results can be of high value for DWTPs around the globe in their planning for future treatment strategies to meet the increasing concern about human exposure to unknown CECs present in their drinking water.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ásia , Água Potável/análise , Monitoramento Ambiental , Europa (Continente) , Humanos , Poluentes Químicos da Água/análise
8.
J Hazard Mater ; 401: 123681, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113720

RESUMO

To date, there is no analytical approach available that allows the full identification and characterization of highly complex disinfection by-product (DBP) mixtures. This study aimed at investigating the chemodiversity of drinking water halogenated DBPs using diverse analytical tools: measurement of adsorbable organic halogen (AOX) and mass spectrometry (MS)-based target and non-target analytical workflows. Water was sampled before and after chemical disinfection (chlorine or chloramine) at four drinking water treatment plants in Sweden. The target analysis had the highest sensitivity, although it could only partially explain the AOX formed in the disinfected waters. Non-target Fourier transform ion cyclotron resonance (FT-ICR) MS analysis indicated that only up to 19 Cl and/or Br-CHO formulae were common to all disinfected waters. Unexpectedly, a high diversity of halogenated DBPs (presumed halogenated polyphenolic and highly unsaturated compounds) was found in chloraminated surface water, comparable to that found in chlorinated surface water. Overall, up to 86 DBPs (including isobaric species) were tentatively identified using liquid chromatography (LC)-Orbitrap MS. Although further work is needed to confirm their identity and assess their relevance in terms of toxicity, they can be used to design suspect lists to improve the characterization of disinfected water halogenated mixtures.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Desinfecção , Halogenação , Suécia , Poluentes Químicos da Água/análise
9.
J Hazard Mater ; 401: 123377, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32652425

RESUMO

Wastewater treatment plants (WWTPs) are known point sources of contaminants of emerging concern (CECs) to the aquatic environment, but current knowledge is mostly limited to well-known chemical structures. In this study, we sought to identify unknown CECs polluting the aquatic environment through a novel suspect screening approach for organohalogens, i.e. organic halogenated molecules often toxic and resistant to transformation and characterised as persistent organic pollutants (POPs). Surface water samples were collected with passive samplers in the Fyris River catchment (Uppsala, Sweden), analysed using liquid chromatography high-resolution mass spectrometry (LC-HRMS) and screened for organohalogens using a suspect screening approach based on market data obtained from a regulatory authority. Thirteen suspects from very different application areas were confirmed or tentatively identified with high confidence, including seven previously unknown structures (diflufenican, chlorzoxazone, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 2,4-disulfamyl-5-trifluoromethylaniline, 5-amino-2-chlorotoluene-4-sulfonic acid, perfluoropentane-1-sufonic acid, (2-chlorophenyl)(hydroxy)methanesulfonic acid). Spatiotemporal occurrence patterns were detected, which helped to understand the usage pattern of the chemicals and pinpoint potential pollution sources, e.g. specific WWTPs in the catchment. Several of the newly identified structures had virtually no information publicly available and were detected years after their last registered use, which highlights the knowledge gaps and concerns about POPs.

10.
Talanta ; 219: 121294, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887036

RESUMO

A new extraction method with limited clean-up requirements prior to screening various matrices for organic micropollutants using liquid chromatography-high resolution mass spectrometry (LC-HRMS) for analysis was developed. First, the performance of three extraction methods (QuEChERS with SPE clean-up, ultrasonication with SPE clean-up, extraction without SPE clean-up) was tested, optimized, and compared using >200 contaminants of emerging concern (CECs) together covering a wide range of physicochemical properties applicable for suspect and non-target screening in biota. White-tailed sea eagle (Haliaeetus albicilla) muscle tissue was used in method development and optimization. The method without SPE clean-up was then applied to European perch (Perca fluviatilis) muscle, heart, and liver tissues. The optimization and application of the method demonstrated a wide applicable domain of the novel extraction method regarding species, tissues, and chemicals. For future applications, the suitability of the method for suspect and non-target screening was tested. Overall, our extraction method appears to be sufficiently simple and broad (relatively non-discriminant) for use prior to analysis of CECs in various biota.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Biota , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Extração em Fase Sólida , Poluentes Químicos da Água/análise
11.
Sci Total Environ ; 706: 135680, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31784151

RESUMO

A wide range of organic micropollutants (n = 163) representing several compound categories (pharmaceuticals, pesticides, per- and polyfluorinated alkyl substances, flame retardants, phthalates, food additives, drugs and benzos) were analysed in water samples from the Göta Älv river (Sweden's second largest source water). The sampling also included raw water and finished drinking water from seven drinking water treatment plants and in addition a more detailed sampling at one of the treatment plants after six granulated active carbon filters of varying operational ages. In total, 27 organic micropollutants were detected, with individual concentrations ranging from sub ng L-1 levels to 54 ng L-1. The impact of human activities along the flow path was reflected by increased concentrations downstream the river, with total concentrations ranging from 65 ng L-1 at the start of the river to 120 ng L-1 at the last sampling point. The removal efficiency was significantly (p = 0.014; one-sided t-test) higher in treatment plants that employed granulated active carbon filters (n = 4; average 60%) or artificial infiltration (n = 1; 65%) compared with those that used a more conventional treatment strategy (n = 2; 38%). The removal was also strongly affected by the operational age of the carbon filters. A filter with an operational age of 12 months with recent addition of ~10% new material showed an average removal efficiency of 92%, while a 25-month old filter had an average of 76%, and an even lower 34% was observed for a 71-month old filter. The breakthrough in the carbon filters occurred in the order of dissolved organic carbon, per- and polyfluorinated alkyl substances and then other organic micropollutants. The addition of fresh granulated active carbon seemed to improve the removal of hydrophobic organic compounds, particularly dissolved organic carbon and per- and polyfluorinated alkyl substances.


Assuntos
Purificação da Água , Carbono , Água Potável , Suécia , Poluentes Químicos da Água
12.
Sci Total Environ ; 703: 135530, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767294

RESUMO

This study investigated, for the first time, the occurrence and fate of 29 multiple-class pharmaceuticals (PhACs) in two source separated sanitation systems based on: (i) batch experiments for the anaerobic digestion (AD) of fecal sludge under mesophilic (37 °C) and thermophilic (52 °C) conditions, and (ii) a full-scale blackwater treatment plant using wet composting and sanitation with urea addition. Results revealed high concentrations of PhACs in raw fecal sludge and blackwater samples, with concentrations up to hundreds of µg L-1 and µg kg-1 dry weight (dw) in liquid and solid fractions, respectively. For mesophilic and thermophilic treatments in the batch experiments, average PhACs removal rates of 31% and 45%, respectively, were observed. The average removal efficiency was slightly better for the full-scale blackwater treatment, with 49% average removal, and few compounds, such as atenolol, valsartan and hydrochlorothiazide, showed almost complete degradation. In the AD treatments, no significant differences were observed between mesophilic and thermophilic conditions. For the full-scale blackwater treatment, the aerobic wet composting step proved to be the most efficient in PhACs reduction, while urea addition had an almost negligible effect for most PhACs, except for citalopram, venlafaxine, oxazepam, valsartan and atorvastatin, for which minor reductions (on average 25%) were observed. Even though both treatment systems reduced initial PhACs loads considerably, significant PhAC concentrations remained in the treated effluents, indicating that fecal sludge and blackwater fertilizations could be a relevant vector for dissemination of PhACs into agricultural fields and thus the environment.


Assuntos
Preparações Farmacêuticas/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Saneamento , Esgotos
13.
Sci Total Environ ; 707: 135582, 2020 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-31776003

RESUMO

Contaminants in the soil may threaten soil functions (SFs) and, in turn, hinder the delivery of ecosystem services (ES). A framework for ecological risk assessments (ERAs) within the APPLICERA - APPLICable site-specific Environmental Risk Assessment research project promotes assessments that consider other soil quality parameters than only contaminant concentrations. The developed framework is: (i) able to differentiate the effects of contamination on SFs from the effects of other soil qualities essential for soil biota; and (ii) provides a robust basis for improved soil quality management in remediation projects. This study evaluates the socio-economic consequences of remediation alternatives stemming from a Tier 1 ERA that focusses on total contaminant concentrations and soil quality standards and a detailed, site-specific Tier 3 Triad approach that is based on the APPLICERA framework. The present study demonstrates how Tier 1 and Tier 3 ERAs differ in terms of the socio-economic consequences of their remediation actions, as well as presents a novel method for the semi-quantitative assessment of on-site ES. Although the presented Tier 3 ERA is more expensive and time-consuming than the more traditional Tier 1 ERA approach, it has the potential to lower the costs of remediation actions, decrease greenhouse gas emissions, reduce other environmental impacts, and minimise socio-economic losses. Furthermore, the remediation actions stemming from the Tier 3 ERA were predicted to exert far less negative ES effects than the actions proposed based on the results of the Tier 1 ERA.

14.
Environ Sci Technol ; 53(19): 11447-11457, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31476116

RESUMO

We investigated associations between serum perfluoroalkyl acid (PFAA) concentrations in children aged 4, 8, and 12 years (sampled in 2008-2015; n = 57, 55, and 119, respectively) and exposure via placental transfer, breastfeeding, and ingestion of PFAA-contaminated drinking water. Sampling took place in Uppsala County, Sweden, where the drinking water has been historically contaminated with perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS), perfluorooctanesulfonate (PFOS), perfluoroheptanoate (PFHpA), and perfluorooctanoate (PFOA). PFOS showed the highest median concentrations in serum (3.8-5.3 ng g-1 serum), followed by PFHxS (1.6-5.0 ng g-1 serum), PFOA (2.0-2.5 ng g-1 serum), and perfluorononanoate (PFNA) (0.59-0.69 ng g-1 serum) in children. Including all children, serum PFOA, PFHxS, and PFOS concentrations in children increased 10, 10, and 1.3% (adjusted mean), respectively, per unit (ng g-1 serum) of increase in the maternal serum level (at delivery), the associations being strongest for 4 year-old children. PFHxS and PFOS significantly increased 3.9 and 3.8%, respectively, per month of nursing, with the highest increase for 4 year-olds. PFOA, PFBS, PFHxS, and PFOS increased 1.2, 207, 7.4, and 0.93%, respectively, per month of cumulative drinking water exposure. Early life exposure to PFOA, PFHxS, and PFOS is an important determinant of serum concentrations in children, with the strongest influence on younger ages. Drinking water with low to moderate PFBS, PFHxS, PFOS, and PFOA contamination is an important source of exposure for children with background exposure from other sources.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorcarbonetos , Caprilatos , Criança , Pré-Escolar , Ingestão de Líquidos , Feminino , Humanos , Gravidez , Soro , Suécia , Poluição da Água
15.
Sci Total Environ ; 692: 1097-1105, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31539941

RESUMO

Boreal forests store large amounts of atmospherically deposited (semi-)persistent organic pollutants (POPs). The terrestrial POPs may be exported to streams and rivers through processes that are heavily impacted by seasonality. In this screening study, concentrations of 4 legacy and 45 alternative flame retardants (FRs) were determined in the dissolved and particulate phase in streams within a relatively pristine boreal catchment in northern Europe (Krycklan Catchment Study; 3 sites) and in rivers more impacted by human activities further downstream towards the Baltic Sea (3 sites). The sampling included the main hydrological seasons (snow-free, snow-covered, and spring flood) and was conducted during two consecutive years (2014-2016). Of the 49 analyzed FRs, 11 alternative halogenated FRs (HFRs), 13 alternative organophosphorus FRs (OPFRs), and 4 legacy polybrominated diphenyl ethers (PBDEs) were detected in at least one sample. The average bulk (dissolved + particulate) concentrations of ∑FRs (including all sites) were highest for ∑HFRs (38 ±â€¯70 ng L-1), followed by the ∑OPFRs (3.9 ±â€¯4.9 ng L-1) and the ∑PBDEs (0.0040 ±â€¯0.016 ng L-1). Bulk concentrations of HFRs, OPFRs, and PBDEs were highly variable with season and sampling location, e.g., during spring flood, bulk concentrations were up to 600 times, 3.7 times, and 4.9 times higher for HFRs, OPFRs and PBDEs, respectively, than during periods of lower flow. Bulk concentrations of ∑OPFRs, were elevated at all sites ~6 days before the actual start of the spring flood in 2015, suggesting that hydrophobicity fractionation had occurred within the snowpack. Similar to previous studies of other POPs in the same headwater catchment, there was a general trend that levels of ∑FRs were higher at the mire site than at the forested site. Annual fluxes of FRs were found to be ~15 times higher downstream the city of Umeå compared to at the outlet of the pristine catchment. This study should be regarded as a screening study considering the large number of diverse FRs analyzed and variability in the results.

16.
J Environ Manage ; 246: 920-928, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31279249

RESUMO

A bench-scale column experiment was performed to study the removal of 31 selected organic micropollutants (MPs) and phosphorus by lignite, xyloid lignite (Xylit), granular activated carbon (GAC), Polonite® and sand over a period of 12 weeks. In total 29 out of the 31 MPs showed removal efficiency >90% by GAC with an average removal of 97 ±â€¯6%. Xylit and lignite were less efficient with an average removal of 80 ±â€¯28% and 68 ±â€¯29%, respectively. The removal efficiency was found to be impacted by the characterization of the sorbents and physicochemical properties of the compounds, as well as the interaction between the sorbents and compounds. For instance, Xylit and lignite performed well for relatively hydrophobic (log octanol/water partition coefficient (Kow) ≥3) MPs, while the removal efficiency of moderately hydrophilic, highly hydrophilic and negatively charged MPs were lower. The organic sorbents were found to have more functional groups at their surfaces, which might explain the higher adsorption of MPs to these sorbents. The removal of several MPs improved after four weeks in sand, Xylit, GAC and lignite which may be related to increased biological activity and biofilm development. GAC and sand had limited ability to remove phosphorus (12 ±â€¯27% and 14 ±â€¯2%, respectively), while the calcium-silicate material Polonite® precipitated phosphorus efficiently and increased the total phosphorus removal from 12% to 96% after the GAC filter.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Carvão Vegetal , Fósforo , Eliminação de Resíduos Líquidos , Águas Residuárias
17.
Sci Total Environ ; 692: 259-266, 2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31349167

RESUMO

Traditional swine manure treatments are not fully effective in the removal of veterinary drugs. Moreover, they are costly and entail a significant carbon footprint in many cases. Innovative biological approaches based on phototrophic microorganisms have recently emerged as promising alternatives to overcome those limitations. This work evaluated the removal of 19 veterinary drugs (i.e., 16 antibiotics, 1 analgesic, 1 anti-parasitic and 1 hormone) from piggery wastewater (PWW) in two open photobioreactors (PBR) operated with a consortium of microalgae-bacteria (AB-PBR) and purple photosynthetic bacteria (PPB-PBR). Multiple hydraulic retention times (HRT), in particular 11, 8 and 4 days, were tested during stage I, II and III, respectively. Ten out of 19 target compounds were detected with inlet drug concentrations ranging from 'non-detected' (n.d.) to almost 23,000 ng L-1 for the antibiotic oxytetracycline. Moreover, three of the antibiotics (i.e., enrofloxacin, sulfadiazine and oxytetracycline) were found at concentrations above the analytical linearity range in some or all of the samples under study. AB-PBR supported higher removal efficiencies (REs) than PPB-PBR, except for danofloxacin. Overall, REs progressively decreased when decreasing the HRT. The highest REs (>90%) were observed for doxycycline (95 ±â€¯3%) and oxytetracycline (93 ±â€¯3%) in AB-PBR during stage I. The other drugs, except sulfadimidine that was the most recalcitrant, showed REs above 70% during stage I in the same photobioreactor. In contrast, no removal was observed for danofloxacin in AB-PBR during stage III, sulfadimidine in PPB-PBR during stage III or marbofloxacin in PPB-PBR during the entire experiment.


Assuntos
Bactérias/metabolismo , Microalgas/metabolismo , Consórcios Microbianos , Fotobiorreatores/microbiologia , Drogas Veterinárias/análise , Eliminação de Resíduos Líquidos/métodos , Criação de Animais Domésticos , Animais , Proteobactérias/metabolismo , Sus scrofa , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/análise
18.
Sci Total Environ ; 651(Pt 2): 1670-1679, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30317168

RESUMO

On-site sewage treatment facilities, particularly septic systems combined with soil infiltration, can be an important source of emerging organic contaminants in groundwater and surface water and thus represent a significant source of environmental and human exposure. Two infiltration systems in Åre municipality, Sweden, were examined to assess the occurrence of contaminants in groundwater and their fate and transport during infiltration. Groundwater samples, recipient surface water samples, and wastewater samples from septic tanks were collected from 2016 to 2017 covering all climatological seasons. These samples were analysed for a total of 103 contaminants, including pharmaceuticals, personal care products, organic phosphorus flame-retardants, plasticisers, perfluoroalkyl substances, and food additives. Fourteen of 103 contaminants showed 100% detection frequency in groundwater at concentrations in the low ng L-1 to low µg L-1 range. Of the compounds analysed, tris(2­butoxyethyl) phosphate, sucralose, caffeine, and benzophenone showed high abundancy with maximum concentrations in the µg L-1 range. The data were normalised for dilution using chloride and sucralose as commonly applied tracers; however, the level of sucralose decreased significantly during infiltration and it is thus suboptimal as a sewage water tracer. Large differences between the two infiltration sites were observed in detection frequencies and concentrations in groundwater, which could be attributed to the system design and the contaminant's migration time from release to sampling point. Seasonal variation was observed for selected chemicals, and the more hydrophobic chemicals showed a higher tendency for attenuation, indicating sorption as a major retention mechanism. A moderate environmental risk to aquatic organisms was estimated in adjacent surface water for galaxolide, tris(1­chloro­2­propyl) phosphate, and tris(2­butoxyethyl) phosphate. Due to this site-dependency and potential environmental risks, further studies are needed on infiltration systems in different settings and on alternative treatment techniques to reduce the contaminant discharge from on-site sewage treatment facilities.

19.
J Hazard Mater ; 362: 230-237, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30240997

RESUMO

The aim of this study was to calibrate and apply polar organic chemical integrative samplers (POCIS) to examine 26 per- and polyfluoroalkyl substances (PFASs) in a drinking water treatment plant (DWTP). As a first step, the sampling rates (Rs) of 14 PFASs were determined in a laboratory calibration study for POCIS-WAX (weak-anion exchange) and POCIS-HLB (hydrophilic-lipophilic balance) (each with a surface area per mass of sorbent ratio of 227 cm2 g-1). While most PFASs were still in the linear uptake phase during the 28-day calibration study, Rs ranged from 0.003 to 0.10 L d-1 for POCIS-WAX and 0.00052 to 0.13 for POCIS-HLB. It is important to note that POCIS-WAX had higher Rs for short-chain perfluoroalkyl carboxylates (PFCAs) with a perfluorocarbon chain length of C3-C6 and perfluorobutane sulfonate (PFBS) compared with POCIS-HLB. Furthermore, Rs was significantly positively correlated with the sorbent-water partition coefficient (Kpw) for POCIS-WAX and POCIS-HLB (p < 0.0001). Use of POCIS-WAX and POCIS-HLB in the DWTP showed good agreement with composite water sampling. No removal of PFASs was observed in the full-scale DWTP. Overall, this is the first study of PFAS monitoring in a DWTP using two types of POCIS. The results demonstrate high suitability for future applications.

20.
Chemosphere ; 218: 493-500, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30497032

RESUMO

Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in herring (Clupea harengus) remain high in several parts of the Baltic Sea, despite declines in PCDD/F emissions since the 1980s. The reasons behind this are not well understood. This study applied a statistical modeling approach where sources of PCDD/Fs that contaminate Baltic biota were quantitatively assessed by analyzing existing datasets. PCDD/F patterns were extracted from a herring dataset using positive matrix factorization (PMF). The extracted biota patterns were transformed into sediment patterns using fish-to-sediment transformation factors, and the resulting patterns were compared with known source PCDD/F patterns. The model distinguished three model patterns, which explained 85% of the data. These patterns were matched to tetra-chlorophenol (TCP), penta-chlorophenol/atmospheric background (PCP/AB), and thermal source patterns, respectively. The thermal source was the largest contributor to toxic equivalents (TEQ) in herring, but the level decreased from 42 ±â€¯9.0 pg TEQ g-1 lipid weight (lw) before year 2000 (pre-2000) to 15 ±â€¯2.4 pg TEQ g-1 lw post-2000, i.e., a decline of around one-third in the original TEQ concentration. The contribution of TCP more than doubled, from 2.1 ±â€¯0.62 pg TEQ g-1 lw to 5.6 ±â€¯1.1 pg TEQ g-1 lw, and the relative contribution of PCP/AB also increased. These increasing trends suggest that, as primary air emissions of PCDD/Fs are managed and levels decline, the impact of TCP and PCP/AB sources on Baltic Sea biota will become more important over time and that PCDD/F-contaminated sites in coastal areas and marine environments require more attention.


Assuntos
Dibenzofuranos Policlorados/análise , Peixes , Dibenzodioxinas Policloradas/análise , Poluentes Químicos da Água/análise , Animais , Clorofenóis/análise , Bases de Dados Factuais , Ecotoxicologia/métodos , Monitoramento Ambiental/métodos , Produtos Pesqueiros , Contaminação de Alimentos , Modelos Teóricos , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...