Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32470309

RESUMO

Achieving propagation lengths in hybrid plasmonic systems beyond typical values of tens of micrometers is important for quantum plasmonics applications. We report long-range optical energy propagation due to excitons in semiconductor quantum dots (SQDs) being strongly coupled to surface lattice resonance (SLRs) in silver nanoparticle arrays. Photoluminescence (PL) measurements provide evidence of an exciton-SLR (ESLR) mode extending at least 600 µm from the excitation region. We also observe additional energy propagation with range well beyond the ESLR mode and with dependency on the coupling strength, g, between SQDs and SLR. Cavity quantum electrodynamics calculations capture the nature of the PL spectra for consistent g values, while coupled dipole calculations show a SQD number-dependent electric field decay profile consistent with the experimental spatial PL profile. Our results suggest an exciting direction wherein SLRs mediate long-range interactions between SQDs, having possible applications in optoelectronics, sensing, and quantum information science.

2.
ACS Nano ; 13(11): 13264-13270, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31661244

RESUMO

Semiconducting single-walled carbon nanotubes (SWCNTs) constitute an ideal platform for developing near-infrared biosensors, single photon sources, and nanolasers due to their distinct optical and electrical properties. Covalent doping of SWCNTs has recently been discovered as an efficient approach in enhancing their emission intensities. We perform pump-probe studies of SWCNTs that are covalently doped with sp3 quantum defects and reveal strikingly different exciton formation dynamics and decay mechanisms in the presence of the defect sites. We show that, in highly doped SWCNTs, ultrafast trapping of excitons at the defect sites can outpace other photodynamic processes and lead to ground-state photobleaching of the quantum defects. Our fitting of the transient data with a kinetic model also reveals an upper limit in the quantum defect density for obtaining highly luminescent SWCNTs without causing irreversible damage. These findings not only deepen our understanding of the photodynamics in covalently doped SWCNTs but also reveal critical information for the design of bright near-infrared emitters that can be utilized in biological, quantum information, and nanophotonic applications.

3.
Nanoscale ; 11(12): 5412-5421, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30855041

RESUMO

To take peptide materials from predominantly structural to functional assemblies, variations in cofactor binding sites must be engineered and controlled. Here, we have employed the peptide sequence c16-AHX3K3-CO2H where X3 represents the aliphatic structural component of the peptide design that dictates ß-sheet formation and upon self-assembly yields a change in the overall microenvironment surrounding the Zn protoporphyrin IX ((PPIX)Zn) binding site. All peptides studied yield ß-sheet rich nanofibers highlighting the materials' resiliency to amino acid substitution. We highlight that the (PPIX)Zn binding constants correlate strongly with amino acid side chain volume, where X = L or I yields the lowest dissociation constant values (KD). The resulting microenvironment highlights the materials' ability to control interchromophore electronic interactions such that slip-stacked cofacial arrangements are observed via exciton splitting in UV/visible and circular dichroism spectroscopy. Steady state and time-resolved photoluminescence suggests that greater interchromophore packing yields larger excimer populations and corresponding longer excimer association lifetimes (τA) which directly translates to shorter exciton diffusion lengths. In comparison to synthetic porphyrin molecular assemblies, this work demonstrates the ability to employ the peptide assembly to modulate the degree of cofactor arrangement, extent of excimer formation, and the exciton hopping rates all while in a platform amenable for producing polymer-like materials.


Assuntos
Nanofibras/química , Peptídeos/química , Protoporfirinas/química , Sítios de Ligação , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Ligação Proteica , Conformação Proteica em Folha beta , Espectrofotometria
4.
ACS Appl Mater Interfaces ; 11(9): 9583-9593, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30789701

RESUMO

Lead halide perovskites present a versatile class of solution-processable semiconductors with highly tunable bandgaps that span ultraviolet, visible, and near-infrared portions of the spectrum. We explore phase-separated chloride and iodide lead perovskite mixtures as candidate materials for intermediate band applications in future photovoltaics. X-ray diffraction and scanning electron microscopy reveal that deposition of precursor solutions across the MAPbCl3/MAPbI3 composition space affords quasi-epitaxial cocrystallized films, in which the two perovskites do not alloy but instead remain phase-segregated. First-principle calculations further support the formation of an epitaxial interface and predict energy offsets in the valence band and conduction band edges that could result in intermediate energy absorption. The charge dynamics of variable mixtures of the relatively narrow bandgap (1.57 eV) MAPbI3 perovskite and wide bandgap (3.02 eV) MAPbCl3 are probed to map charge and energy flow direction and kinetics. Time-resolved photoluminescence and transient absorption measurements reveal charge transfer of photoexcited carriers in MAPbCl3 to MAPbI3 in tens of picoseconds. The rate of quenching can be further tuned by replacing MAPbI3 with two-dimensional Ruddlesden-Popper (BA)2(MA) n-1Pb nI3 n+1 ( n = 3, 2, and 1) perovskites, which also remain phase-separated.

5.
Nat Commun ; 10(1): 482, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30696817

RESUMO

Organic-inorganic hybrid perovskites such as methylammonium lead iodide (CH3NH3PbI3) are game-changing semiconductors for solar cells and light-emitting devices owing to their defect tolerance and exceptionally long carrier lifetimes and diffusion lengths. Determining whether the dynamically disordered organic cations with large dipole moment benefit the optoelectronic properties of CH3NH3PbI3 has been an outstanding challenge. Herein, via transient absorption measurements employing an infrared pump pulse tuned to a methylammonium vibration, we observe slow, nanosecond-long thermal dissipation from the selectively excited organic mode to the inorganic sublattice. The resulting transient electronic signatures, during the period of thermal-nonequilibrium when the induced thermal motions are mostly concentrated on the organic sublattice, reveal that the induced atomic motions of the organic cations do not alter the absorption or the photoluminescence response of CH3NH3PbI3, beyond thermal effects. Our results suggest that the attractive optoelectronic properties of CH3NH3PbI3 mainly derive from the inorganic lead-halide framework.

6.
J Phys Chem Lett ; 9(23): 6731-6738, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30403874

RESUMO

Singlet fission provides a promising route for overcoming the Shockley-Queisser limit in solar cells using organic materials. Despite singlet fission dynamics having been extensively investigated, the transport of the various intermediates in relation to the singlet and triplet states is largely unknown. Here we employ temperature-dependent ultrafast transient absorption microscopy to image the transport of singlet fission intermediates in single crystals of tetracene. These measurements suggest a mobile singlet fission intermediate state at low temperatures, with a diffusion constant of 36 cm2s-1 at 5 K, approaching that for the free singlet excitons, which we attribute to the spin-entangled correlated triplet pair state 1[TT]. These results indicate that 1[TT] could transport with a similar mechanism as the bright singlet excitons, which has important implications in designing materials for singlet fission and spintronic applications.

7.
Nano Lett ; 18(8): 4647-4652, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29985629

RESUMO

Many important light-matter coupling and energy-transfer processes depend critically on the dimensionality and orientation of optical transition dipoles in emitters. We investigate individual quasi-two-dimensional nanoplatelets (NPLs) using higher-order laser scanning microscopy and find that absorption dipoles in NPLs are isotropic in three dimensions at the excitation wavelength. Correlated polarization studies of the NPLs reveal that their emission polarization is strongly dependent on the aspect ratio of the lateral dimensions. Our simulations reveal that this emission anisotropy can be readily explained by the electric field renormalization effect caused by the dielectric contrast between the NPLs and the surrounding medium, and we conclude that emission dipoles in NPLs are isotropic in the plane of the NPLs. Our study presents an approach for disentangling the effects of dipole degeneracy and electric field renormalization on emission anisotropy and can be adapted for studying the intrinsic optical transition dipoles of various nanostructures.


Assuntos
Luminescência , Substâncias Luminescentes/química , Nanopartículas/química , Semicondutores , Anisotropia , Compostos de Cádmio/química , Simulação por Computador , Campos Eletromagnéticos , Luz , Modelos Químicos , Tamanho da Partícula , Fenômenos Físicos , Compostos de Selênio/química , Sulfetos/química , Propriedades de Superfície
8.
Nat Commun ; 9(1): 1853, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748626

RESUMO

Developing a fundamental understanding of ultrafast non-thermal processes in metallic nanosystems will lead to applications in photodetection, photochemistry and photonic circuitry. Typically, non-thermal and thermal carrier populations in plasmonic systems are inferred either by making assumptions about the functional form of the initial energy distribution or using indirect sensors like localized plasmon frequency shifts. Here we directly determine non-thermal and thermal distributions and dynamics in thin films by applying a double inversion procedure to optical pump-probe data that relates the reflectivity changes around Fermi energy to the changes in the dielectric function and in the single-electron energy band occupancies. When applied to normal incidence measurements our method uncovers the ultrafast excitation of a non-Fermi-Dirac distribution and its subsequent thermalization dynamics. Furthermore, when applied to the Kretschmann configuration, we show that the excitation of propagating plasmons leads to a broader energy distribution of electrons due to the enhanced Landau damping.

9.
Chem Commun (Camb) ; 54(46): 5809-5818, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29748666

RESUMO

It is recognized that metal organic complexes that serve as sensitizers can present various degrees of challenges viz. synthesis and stability for photonic applications such as triplet-triplet annihilation based photon upconversion (TTA-PUC). Presently, researchers, including our group, are turning their attention toward purely organic triplet sensitizers, which can be handled more easily for photon management science. In this review, we surveyed recently developed all-organic chromophoric systems that were devised and used for TTA-PUC research. Knowing that TTA-PUC research has mainly been focused on the design and synthesis of the triplet sensitizers, we detailed the underlying photophysics and thermodynamics that served as the starting point for the synthesis of the purely organic chromophores in question. Accordingly, this review details triplet sensitizers that operate on (i) spin-orbit coupling or heavy atom effect, (ii) Baird-type aromaticity and antiaromaticity, (iii) open-shell characteristics or doublet excited state and (iv) thermally activated delayed fluorescence.

10.
Nanotechnology ; 29(17): 175201, 2018 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-29443008

RESUMO

We demonstrate here defect induced changes on the morphology and surface properties of indium oxide (In2O3) nanowires and further study their effects on the near-band-edge (NBE) emission, thereby showing the significant influence of surface states on In2O3 nanostructure based device characteristics for potential optoelectronic applications. In2O3 nanowires with cubic crystal structure (c-In2O3) were synthesized via carbothermal reduction technique using a gold-catalyst-assisted vapor-liquid-solid method. Onset of strong optical absorption could be observed at energies greater than 3.5 eV consistent with highly n-type characteristics due to unintentional doping from oxygen vacancy [Formula: see text] defects as confirmed using Raman spectroscopy. A combination of high resolution transmission electron microscopy, x-ray photoelectron spectroscopy and valence band analysis on the nanowire morphology and stoichiometry reveals presence of high-density of [Formula: see text] defects on the surface of the nanowires. As a result, chemisorbed oxygen species can be observed leading to upward band bending at the surface which corresponds to a smaller valence band offset of 2.15 eV. Temperature dependent photoluminescence (PL) spectroscopy was used to study the nature of the defect states and the influence of the surface states on the electronic band structure and NBE emission has been discussed. Our data reveals significant broadening of the NBE PL peak consistent with impurity band broadening leading to band-tailing effect from heavy doping.

11.
Nano Lett ; 18(1): 650-655, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29244518

RESUMO

We report on the experimental observation of differential wavevector distribution of surface-enhanced Raman scattering (SERS) and fluorescence from dye molecules confined to a gap between plasmonic silver nanowire and a thin, gold mirror. The fluorescence was mainly confined to higher values of in-plane wavevectors, whereas SERS signal was uniformly distributed along all the wavevectors. The optical energy-momentum spectra from the distal end of the nanowire revealed strong polarization dependence of this differentiation. All these observations were corroborated by full-wave three-dimensional numerical simulations, which further revealed an interesting connection between out-coupled wavevectors and parameters such as hybridized modes in the gap-plasmon cavity, and orientation and location of molecular dipoles in the geometry. Our results reveal a new prospect of discriminating electronic and vibrational transitions in resonant dye molecules using a subwavelength gap plasmonic cavity in the continuous-wave excitation limit, and can be further harnessed to engineer molecular radiative relaxation processes in momentum space.

12.
Nat Commun ; 8(1): 2135, 2017 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-29233993

RESUMO

The originally published version of this Article contained an error in Equation 1. The two ℏ terms were missing from this equation. This has now been corrected in the PDF and HTML versions of the Article.

13.
Nat Commun ; 8(1): 986, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29042536

RESUMO

The creation of energetic electrons through plasmon excitation of nanostructures before thermalization has been proposed for a wide number of applications in optical energy conversion and ultrafast nanophotonics. However, the use of "nonthermal" electrons is primarily limited by both a low generation efficiency and their ultrafast decay. We report experimental and theoretical results on the use of broadband plasmonic nanopatch metasurfaces comprising a gold substrate coupled to silver nanocubes that produce large concentrations of hot electrons, which we measure using transient absorption spectroscopy. We find evidence for three subpopulations of nonthermal carriers, which we propose arise from anisotropic electron-electron scattering within sp-bands near the Fermi surface. The bimetallic character of the metasurface strongly impacts the physics, with dissipation occurring primarily in the gold, whereas the quantum process of hot electron generation takes place in both components. Our calculations show that the choice of geometry and materials is crucial for producing strong ultrafast nonthermal electron components.The creation of energetic electrons through plasmon excitation has implications in optical energy conversion and ultrafast nanophotonics. Here, the authors find evidence for three subpopulations of nonthermal carriers which arise from anisotropic electron-electron scattering near the Fermi surface.

14.
ACS Nano ; 11(9): 9112-9118, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28817256

RESUMO

Light-harvesting biomaterials are an attractive target in photovoltaics, photocatalysis, and artificial photosynthesis. Through peptide self-assembly, complex nanostructures can be engineered to study the role of chromophore organization during light absorption and energy transport. To this end, we demonstrate the one-dimensional transport of excitons along naturally occurring, light-harvesting, Zn-protoporphyrin IX chromophores within self-assembled peptide-amphiphile nanofibers. The internal structure of the nanofibers induces packing of the porphyrins into linear chains. We find that this peptide assembly can enable long-range exciton diffusion, yet it also induces the formation of excimers between adjacent molecules, which serve as exciton traps. Electronic coupling between neighboring porphyrin molecules is confirmed by various spectroscopic methods. The exciton diffusion process is then probed through transient photoluminescence and absorption measurements and fit to a model for one-dimensional hopping. Because excimer formation impedes exciton hopping, increasing the interchromophore spacing allows for improved diffusivity, which we control through porphyrin doping levels. We show that diffusion lengths of over 60 nm are possible at low porphyrin doping, representing an order of magnitude improvement over the highest doping fractions.


Assuntos
Nanofibras/química , Peptídeos/química , Protoporfirinas/química , Tensoativos/química , Luminescência , Modelos Moleculares , Nanofibras/ultraestrutura
15.
ACS Nano ; 11(9): 9119-9127, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28787569

RESUMO

Quasi-two-dimensional nanoplatelets (NPLs) possess fundamentally different excitonic properties from zero-dimensional quantum dots. We study lateral size-dependent photon emission statistics and carrier dynamics of individual NPLs using second-order photon correlation (g(2)(τ)) spectroscopy and photoluminescence (PL) intensity-dependent lifetime analysis. Room-temperature radiative lifetimes of NPLs can be derived from maximum PL intensity periods in PL time traces. It first decreases with NPL lateral size and then stays constant, deviating from the electric dipole approximation. Analysis of the PL time traces further reveals that the single exciton quantum yield in NPLs decreases with NPL lateral size and increases with protecting shell thickness, indicating the importance of surface passivation on NPL emission quality. Second-order photon correlation (g(2)(τ)) studies of single NPLs show that the biexciton quantum yield is strongly dependent on the lateral size and single exciton quantum yield of the NPLs. In large NPLs with unity single exciton quantum yield, the corresponding biexciton quantum yield can reach unity. These findings reveal that by careful growth control and core-shell material engineering, NPLs can be of great potential for light amplification and integrated quantum photonic applications.

16.
J Org Chem ; 82(19): 10167-10173, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28836439

RESUMO

We report a novel reductive desulfurization reaction involving π-acidic naphthalene diimides (NDI) 1 using thionating agents such as Lawesson's reagent. Along with the expected thionated NDI derivatives 2-6, new heterocyclic naphtho-p-quinodimethane compounds 7 depicting broken/reduced symmetry were successfully isolated and fully characterized. Empirical studies and theoretical modeling suggest that 7 was formed via a six-membered ring oxathiaphosphenine intermediate rather than the usual four-membered ring oxathiaphosphetane of 2-6. Aside from the reduced symmetry in 7 as confirmed by single-crystal XRD analysis, we established that the ground state UV-vis absorption of 7 is red-shifted in comparison to the parent NDI 1. This result was expected in the case of thionated polycyclic diimides. However, unusual low energy transitions originate from Baird 4nπ aromaticity of compounds 7 in lieu of the intrinsic Hückel (4n + 2)π aromaticity as encountered in NDI 1. Moreover, complementary theoretical modeling results also corroborate this change in aromaticity of 7. Consequently, photophysical investigations show that, compared to parent NDI 1, 7 can easily access and emit from its T1 state with a phosphorescence 3(7a)* lifetime of τP = 395 µs at 77 K indicative of the formation of the corresponding "aromatic triplet" species according to the Baird's rule of aromaticity.

17.
ACS Appl Mater Interfaces ; 8(38): 24983-8, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27617568

RESUMO

We demonstrate that thin films of metal-organic framework (MOF)-like materials, containing two perylenediimides (PDICl4, PDIOPh2) and a squaraine dye (S1), can be fabricated by layer-by-layer assembly (LbL). Interestingly, these LbL films absorb across the visible light region (400-750 nm) and facilitate directional energy transfer. Due to the high spectral overlap and oriented transition dipole moments of the donor (PDICl4 and PDIOPh2) and acceptor (S1) components, directional long-range energy transfer from the bluest to reddest absorber was successfully demonstrated in the multicomponent MOF-like films. These findings have significant implications for the development of solar energy conversion devices based on MOFs.

18.
J Phys Chem Lett ; 6(24): 4904-8, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26595327

RESUMO

This Letter reports the shape-dependent third-order nonlinear optical properties of anisotropic gold nanoparticles. We characterized the nonlinear absorption coefficients of nanorods, nanostars, and nanoshells using femtosecond Z-scan measurements. By comparing nanoparticle solutions with a similar linear extinction at the laser excitation wavelength, we separated shape effects from that of the localized surface plasmon wavelength. We found that the nonlinear response depended on particle shape. Using pump-probe spectroscopy, we measured the ultrafast transient response of nanoparticles, which supported the strong saturable absorption observed in nanorods and weak nonlinear response in nanoshells. We found that the magnitude of saturable absorption as well as the ultrafast spectral responses of nanoparticles were affected by the linear absorption of the nanoparticles.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Óptica e Fotônica , Espectrofotometria Ultravioleta
19.
Nano Lett ; 15(11): 7458-66, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26437118

RESUMO

We demonstrate two-color nanoemitters that enable the selection of the dominant emitting wavelength by varying the polarization of excitation light. The nanoemitters were fabricated via surface plasmon-triggered two-photon polymerization. By using two polymerizable solutions with different quantum dots, emitters of different colors can be positioned selectively in different orientations in the close vicinity of the metal nanoparticles. The dominant emission wavelength of the metal/polymer anisotropic hybrid nanoemitter thus can be selected by altering the incident polarization.

20.
J Phys Chem Lett ; 6(13): 2554-61, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26266733

RESUMO

Indium sulfide (In2S3) is a promising absorber base for substitutionally doped intermediate band photovoltaics (IBPV); however, the dynamics of charge carriers traversing the electronic density of states that determine the optical and electronic response of thin films under stimuli have yet to be explored. The kinetics of photophysical processes in In2S3 grown by oxygen-free atomic layer deposition are deduced from photoconductivity, photoluminescence (PL), and transient absorption spectroscopy. We develop a map of excited-state dynamics for polycrystalline thin films including a secondary conduction band ∼2.1 eV above the first, plus sulfur vacancy and indium interstitial defect levels resulting in long-lived (∼100 ns) transients. Band-edge recombination produces PL and stimulated emission, which both intensify and red-shift as deposition temperature and grain size increase. The effect of rapid conduction band electron relaxation (<30 ps) and deep defect levels on IBPV employing In2S3-based absorbers is finally considered.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA