Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Sci Rep ; 12(1): 9379, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672372

RESUMO

The increase of COVID-19 breakthrough infection risk with time since vaccination has a clear relationship to the decrease of antibody concentration with time. The empirically-observed dependence on blood IgG anti-receptor binding domain antibody concentration of SARS-CoV-2 vaccine efficacy against infection has a rational explanation in the statistics of binding of antibody to spike proteins on the virus surface, leading to blocking of binding to the receptor: namely that the probability of infection is the probability that a critical number of the spike proteins protruding from the virus are unblocked. The model is consistent with the observed antibody concentrations required to induce immunity and with the observed dependence of vaccine efficacy on antibody concentration and thus is a useful tool in the development of models to relate, for an individual person, risk of infection given measured antibody concentration. It can be used to relate population breakthrough infection risk to the distribution across the population of antibody concentration, and its variation with time.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química
2.
Molecules ; 27(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684507

RESUMO

Laboratory cultures of two 'biosynthetically talented' bacterial strains harvested from tropical and temperate Pacific Ocean sediment habitats were examined for the production of new natural products. Cultures of the tropical Salinispora arenicola strain RJA3005, harvested from a PNG marine sediment, produced salinorcinol (3) and salinacetamide (4), which had previously been reported as products of engineered and mutated strains of Amycolatopsis mediterranei, but had not been found before as natural products. An S. arenicola strain RJA4486, harvested from marine sediment collected in the temperate ocean waters off British Columbia, produced the new aminoquinone polyketide salinisporamine (5). Natural products 3, 4, and 5 are putative shunt products of the widely distributed rifamycin biosynthetic pathway.


Assuntos
Actinomycetales , Produtos Biológicos , Micromonosporaceae , Produtos Biológicos/metabolismo , Sedimentos Geológicos/microbiologia , Micromonosporaceae/genética
3.
J Nat Prod ; 85(5): 1274-1281, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35522580

RESUMO

Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.


Assuntos
Infecções por HIV , HIV-1 , Poríferos , Animais , Colúmbia Britânica , Linfócitos T CD4-Positivos , Poríferos/química , Sesterterpenos/química , Latência Viral
4.
J Antibiot (Tokyo) ; 75(4): 213-225, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091665

RESUMO

Screening of a marine derived crude natural product extract library, followed by bioactivity guided fractionation, has led to isolation and structural elucidation of 10 natural products as hits active against Mycobacterium tuberculosis (Mtb). Among them, three (3, 4 and 5) were identified for the first time and the remaining 7 compounds (1, 2, 6, 7, 8, 9 and 10) were previously reported, but now assigned with anti-mycobacterial activity. Among identified hits, the oligo cyclic depsipeptide discodermin B (7) exhibited the highest potency with an MIC90 value of 0.5 µM. The polysufide alkaloid lissoclinotoxin F (1) displayed a good balance of anti Mtb potency (MIC90 = 2.6 µM) and selectivity (SI = 19 in HEK293 cells). Lissoclinotoxin F (1) was found to be active against intracellular Mtb as well as non-replicating forms of Mtb, with higher activity against Mtb compared to other gram-negative and gram-positive bacteria. Consequently, lissoclinotoxin F (1) could be used as a lead compound for development of new TB drugs. Details regarding screening techniques, structural elucidation and preliminary structural activity relationships (SAR) of the isolated hits are discussed.


Assuntos
Antituberculosos , Invertebrados , Mycobacterium tuberculosis , Animais , Antituberculosos/química , Células HEK293 , Humanos , Invertebrados/química , Testes de Sensibilidade Microbiana
5.
J Biomol Struct Dyn ; 40(7): 3273-3284, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33213303

RESUMO

In this study, the antimicrobial properties of Plumbago indica root bark against bacterial strains and a fungal strain were investigatedusing the disc diffusion and minimum inhibitory concentration assays. Gas chromatography/mass spectrometry, nuclear magnetic resonance spectrometry, and column chromatography analyses were conducted to identify and isolate the active compounds. A docking study was performed to identify possible interactions between the active compound and DNA gyrase using the Schrödinger Glide docking program. Both methanol extract and the ethyl acetate fraction of the root bark showed significant antimicrobial activity against the gram-positive bacteria than against the gram-negative bacteria and the fungal strain. The active compound was identified as plumbagin. A disc diffusion assay of plumbagin revealed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus. Molecular docking of plumbagin revealed high specificity towards the DNA gyrase binding site with a high fitness score and a minimum energy barrier of -7.651 kcal/mol. These findings indicate that P. indica exhibits significant antimicrobial activity, primarily due to the presence of plumbagin. The specificity of plumbagin toward DNA gyrase in S. aureus indicates the feasibility of utilizing P. indica for developing new drug leads against drug resistant microbial strain. Communicated by Ramaswamy H. Sarma.

6.
Environ Int ; 159: 107045, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920278

RESUMO

Benzo[a]pyrene (BaP) is formed by incomplete combustion of organic materials (petroleum, coal, tobacco, etc.). BaP is designated by the International Agency for Research on Cancer as a group 1 known human carcinogen; a classification supported by numerous studies in preclinical models and epidemiology studies of exposed populations. Risk assessment relies on toxicokinetic and cancer studies in rodents at doses 5-6 orders of magnitude greater than average human uptake. Using a dose-response design at environmentally relevant concentrations, this study follows uptake, metabolism, and elimination of [14C]-BaP in human plasma by employing UPLC - accelerator mass spectrometry (UPLC-AMS). Volunteers were administered 25, 50, 100, and 250 ng (2.7-27 nCi) of [14C]-BaP (with interceding minimum 3-week washout periods) with quantification of parent [14C]-BaP and metabolites in plasma measured over 48 h. [14C]-BaP median Tmax was 30 min with Cmax and area under the curve (AUC) approximating dose-dependency. Marked inter-individual variability in plasma pharmacokinetics following a 250 ng dose was seen with 7 volunteers as measured by the Cmax (8.99 ± 7.08 ng × mL-1) and AUC0-48hr (68.6 ± 64.0 fg × hr-1 × mL-1). Approximately 3-6% of the [14C] recovered (AUC0-48 hr) was parent compound, demonstrating extensive metabolism following oral dosing. Metabolite profiles showed that, even at the earliest time-point (30 min), a substantial percentage of [14C] in plasma was polar BaP metabolites. The best fit modeling approach identified non-compartmental apparent volume of distribution of BaP as significantly increasing as a function of dose (p = 0.004). Bay region tetrols and dihydrodiols predominated, suggesting not only was there extensive first pass metabolism but also potentially bioactivation. AMS enables the study of environmental carcinogens in humans with de minimus risk, allowing for important testing and validation of physiologically based pharmacokinetic models derived from animal data, risk assessment, and the interpretation of data from high-risk occupationally exposed populations.


Assuntos
Benzo(a)pireno , Carcinógenos , Animais , Benzo(a)pireno/farmacocinética , Humanos , Espectrometria de Massas , Medição de Risco
7.
Toxicol Appl Pharmacol ; 438: 115830, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34933053

RESUMO

Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.


Assuntos
Crisenos/administração & dosagem , Crisenos/farmacocinética , Cistina/análogos & derivados , Animais , Carcinógenos/administração & dosagem , Carcinógenos/farmacocinética , Cistina/administração & dosagem , Cistina/farmacocinética , Feminino , Humanos , Masculino , Camundongos , Modelos Biológicos , Neoplasias/induzido quimicamente
8.
Front Nutr ; 8: 734334, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660663

RESUMO

Hydrolysis of glucobrassicin by plant or bacterial myrosinase produces multiple indoles predominantly indole-3-carbinol (I3C). I3C and its major in vivo product, 3,3'-diindolylmethane (DIM), are effective cancer chemopreventive agents in pre-clinical models and show promise in clinical trials. The pharmacokinetics/pharmacodynamics of DIM have been studied in both rodents and humans and urinary DIM is a proposed biomarker of dietary intake of cruciferous vegetables. Recent clinical studies at Oregon State University show surprisingly robust metabolism of DIM in vivo with mono- and di-hydroxylation followed by conjugation with sulfate or glucuronic acid. DIM has multiple mechanisms of action, the most well-characterized is modulation of aryl hydrocarbon receptor (AHR) signaling. In rainbow trout dose-dependent cancer chemoprevention by dietary I3C is achieved when given prior to or concurrent with aflatoxin B1, polycyclic aromatic hydrocarbons, nitrosamines or direct acting carcinogens such as N-methyl-N'-nitro-nitrosoguanidine. Feeding pregnant mice I3C inhibits transplacental carcinogenesis. In humans much of the focus has been on chemoprevention of breast and prostate cancer. Alteration of cytochrome P450-dependent estrogen metabolism is hypothesized to be an important driver of DIM-dependent breast cancer prevention. The few studies done to date comparing glucobrassicin-rich crucifers such as Brussels sprouts with I3C/DIM supplements have shown the greater impact of the latter is due to dose. Daily ingestion of kg quantities of Brussels sprouts is required to produce in vivo levels of DIM achievable by supplementation. In clinical trials these supplement doses have elicited few if any adverse effects. Sulforaphane from glucoraphanin can act synergistically with glucobrassicin-derived DIM and this may lead to opportunities for combinatorial approaches (supplement and food-based) in the clinic.

9.
Langmuir ; 37(33): 10150-10158, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34384020

RESUMO

As a step toward the bottom-up construction of magnonic systems, this paper demonstrates the use of a large-amplitude surface-pressure annealing technique to generate 2-D order in a Langmuir-Blodgett monolayer of magnetic soft spheres comprising a surfactant-encapsulated polyoxometalate. The films show a distorted square lattice interpreted as due to geometric frustration caused by 2-D confinement between soft walls, one being the air interface and the other the aqueous subphase. Hysteresis and relaxation phenomena in the 2-D layers are suggested to be due to folding and time-dependent interpenetration of surfactant chains.

10.
Mol Biol Rep ; 48(7): 5459-5471, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34304367

RESUMO

BACKGROUND: The Canadian prairie ecosystem presents a rich source of natural products from plants that are subjected to herbivory by grazing mammals. This type of ecological competition may contribute to the production of natural products of interest in cell biology and medical research. We provide the first biological description of the sesquiterpene lactone, pulchelloid A, which we isolated from the prairie plant, Gaillardia aristata (Asteraceae) and report that it inhibits mitosis in human cells. METHODS AND RESULTS: We found that G. aristata (Blanket flower) extracts were cytotoxic to human cell lines and used phenotypic assays to characterize the bioactivity of extracts. Before dying, cells were characterized by a rounded morphology, phospho-histone H3 signals, mitotic spindles, and active Cdk1. By biology-guided fractionation of Gaillardia extracts, we isolated a sesquiterpene lactone named pulchelloid A. We used immunofluorescence microscopy and observed that cells treated with pulchelloid A have phospho-histone H3 positive chromosomes and a mitotic spindle, confirming that they were in mitosis. Treated cells arrest with an unusual phenotype; they enter a prolonged mitotic arrest in which the spindles become multipolar and the chromosomes acquire histone γH2AX foci, a hallmark of damaged DNA. CONCLUSIONS: We propose that pulchelloid A, a natural product present in the prairie plant Gaillardia aristata, delays cells in mitosis. There is a growing body of evidence that a small number of members of the sesquiterpene lactone chemical family may target proteins that regulate mitosis.


Assuntos
Asteraceae/química , Extratos Vegetais/química , Fuso Acromático/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Células HT29 , Humanos , Mitose/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/genética
11.
Heliyon ; 7(5): e07131, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34095597

RESUMO

We are investigating plants from the prairie ecological zone of Canada to identify natural products that inhibit mitosis in cancer cells. Investigation of plant parts from the Canadian plant species Hymenoxys richardsonii (Asteraceae) revealed that leaf extracts (PP-360A) had anti-mitotic activity on human cancer cell lines. Cells treated with leaf extracts acquired a rounded morphology, similar to that of cells in mitosis. We demonstrated that the rounded cells contained mitotic spindles and phospho-histone H3 using the techniques of immunofluorescence microscopy. By biology-guided fractionation of H. richardsonii leaves, we isolated a sesquiterpene lactone named hymenoratin, which had not been previously assigned a biological activity. Cells treated with hymenoratin have phospho-histone H3 positive chromosomes, a mitotic spindle, and enter a prolonged mitotic arrest in which the spindles become distorted. By Western blot analysis, hymenoratin treated cells acquire high levels of cyclin B and dephosphorylated Cdk1. There is a growing body of evidence that select members of the sesquiterpene lactone chemical family have anti-mitotic activity.

12.
Drug Metab Dispos ; 49(8): 694-705, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34035125

RESUMO

3,3'-Diindolylmethane (DIM), a major phytochemical derived from ingestion of cruciferous vegetables, is also a dietary supplement. In preclinical models, DIM is an effective cancer chemopreventive agent and has been studied in a number of clinical trials. Previous pharmacokinetic studies in preclinical and clinical models have not reported DIM metabolites in plasma or urine after oral dosing, and the pharmacological actions of DIM on target tissues is assumed to be solely via the parent compound. Seven subjects (6 males and 1 female) ranging from 26-65 years of age, on a cruciferous vegetable-restricted diet prior to and during the study, took 2 BioResponse DIM 150-mg capsules (45.3 mg DIM/capsule) every evening for one week with a final dose the morning of the first blood draw. A complete time course was performed with plasma and urine collected over 48 hours and analyzed by UPLC-MS/MS. In addition to parent DIM, two monohydroxylated metabolites and 1 dihydroxylated metabolite, along with their sulfate and glucuronide conjugates, were present in both plasma and urine. Results reported here are indicative of significant phase 1 and phase 2 metabolism and differ from previous pharmacokinetic studies in rodents and humans, which reported only parent DIM present after oral administration. 3-((1H-indole-3-yl)methyl)indolin-2-one, identified as one of the monohydroxylated products, exhibited greater potency and efficacy as an aryl hydrocarbon receptor agonist when tested in a xenobiotic response element-luciferase reporter assay using Hepa1 cells. In addition to competitive phytochemical-drug adverse reactions, additional metabolites may exhibit pharmacological activity highlighting the importance of further characterization of DIM metabolism in humans. SIGNIFICANCE STATEMENT: 3,3'-Diindolylmethane (DIM), derived from indole-3-carbinol in cruciferous vegetables, is an effective cancer chemopreventive agent in preclinical models and a popular dietary supplement currently in clinical trials. Pharmacokinetic studies to date have found little or no metabolites of DIM in plasma or urine. In marked contrast, we demonstrate rapid appearance of mono- and dihydroxylated metabolites in human plasma and urine as well as their sulfate and glucuronide conjugates. The 3-((1H-indole-3-yl)methyl)indolin-2-one metabolite exhibited significant aryl hydrocarbon receptor agonist activity, emphasizing the need for further characterization of the pharmacological properties of DIM metabolites.


Assuntos
Indóis , Administração Oral , Anticarcinógenos/sangue , Anticarcinógenos/farmacocinética , Anticarcinógenos/urina , Cápsulas , Suplementos Nutricionais , Desenvolvimento de Medicamentos , Vias de Eliminação de Fármacos , Feminino , Humanos , Inativação Metabólica/fisiologia , Indóis/sangue , Indóis/farmacocinética , Indóis/urina , Masculino , Pessoa de Meia-Idade , Compostos Fitoquímicos/sangue , Compostos Fitoquímicos/farmacocinética , Compostos Fitoquímicos/urina
13.
Mol Biol Cell ; 32(15): 1374-1392, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038161

RESUMO

Sterols are important lipid components of the plasma membrane (PM) in eukaryotic cells, but it is unknown how the PM retains sterols at a high concentration. Phospholipids are asymmetrically distributed in the PM, and phospholipid flippases play an important role in generating this phospholipid asymmetry. Here, we provide evidence that phospholipid flippases are essential for retaining ergosterol in the PM of yeast. A mutant in three flippases, Dnf1-Lem3, Dnf2-Lem3, and Dnf3-Crf1, and a membrane protein, Sfk1, showed a severe growth defect. We recently identified Sfk1 as a PM protein involved in phospholipid asymmetry. The PM of this mutant showed high permeability and low density. Staining with the sterol probe filipin and the expression of a sterol biosensor revealed that ergosterol was not retained in the PM. Instead, ergosterol accumulated in an esterified form in lipid droplets. We propose that ergosterol is retained in the PM by the asymmetrical distribution of phospholipids and the action of Sfk1. Once phospholipid asymmetry is severely disrupted, sterols might be exposed on the cytoplasmic leaflet of the PM and actively transported to the endoplasmic reticulum by sterol transfer proteins.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Ergosterol/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Saccharomyces cerevisiae/enzimologia
14.
Org Biomol Chem ; 19(16): 3665-3677, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908574

RESUMO

In this work we report the synthesis of mono lipidated peptides containing a 3-mercaptopropionate linker in the N-terminus by means of a photoinitiated thiol-ene reaction (S-lipidation). We evaluate the self-assembling and hydrogelation properties of a library of mono S-lipidated peptides containing lipid chains of various lengths and demonstrate that hydrogelation was driven by a balance between the lipid chain's hydrophobicity and the peptide's facial hydrophobicity. We further postulate that a simple calculation using estimated values of log D could be used as a predictor of hydrogelation when designing similar systems. A mono S-lipidated peptide containing a short lipid chain that formed hydrogels was fully characterized and a mechanism for the peptide hydrogelation developed. Finally, we demonstrate that the presence of the thioether group in the mono S-lipidated peptide hydrogels, which is a feature lacking in conventional N-acyl lipidated systems, enables the controlled disassembly of the gel via oxidation to the sulfoxide by reactive oxygen species in accordance with a hydrophobicity-modulated strategy. Thus, we conclude that mono S-lipidated peptide hydrogels constitute a novel and simple tool for the development of tissue engineering and targeted drug delivery applications of diseases with overexpression of reactive oxygen species (e.g. degenerative and metabolic diseases, and cancers).


Assuntos
Hidrogéis
15.
ACS Sens ; 6(3): 1295-1304, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33544583

RESUMO

Humidity- and temperature-dependent errors in concentrations reported by electrochemical sensors for atmospheric nitrogen dioxide significantly limit the reliability of the data. A basic understanding of the source of these errors has been missing. Empirical, software-based corrections are of limited reliability. The sensors feature a 40 wt % (≈4 molal) sulfuric acid electrolyte, and carbon working and quasi-reference (QRE) electrodes. We show that the sensor behaves as a truncated transmission line with resistance and capacitance elements varying with humidity. High-amplitude current fluctuations are due to humidity fluctuations, and are charging currents in response to fluctuations in interfacial capacitance. Baseline currents are due to very small differences in the open-circuit electrode potential between working and reference electrodes. We deduce that acid concentration changes in the meniscus within the porous electrode structure, in response to changes in the ambient temperature and humidity, cause both the capacitance fluctuations and the baseline changes. The open-circuit potential differences driving the baseline current variations are in part due to a difference in the liquid junction potential between the QRE and working electrode, dependent on humidity and temperature and caused by a gradient of acid concentration, and in part due to temperature- and acid-concentration-dependent variations in the rate of the potential-determining reactions. Based on the understanding obtained, we demonstrate a simple hardware change that corrects these unwanted errors.


Assuntos
Dióxido de Nitrogênio , Eletrodos , Umidade , Reprodutibilidade dos Testes , Temperatura
16.
Langmuir ; 36(38): 11292-11302, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32882136

RESUMO

We demonstrate the assembly of a compact, gel-like Langmuir-Blodgett film of rods formed by self-assembly of a ß-sheet-forming water-soluble peptide, Ac-IKHLSVN-NH2, at the surface of aqueous electrolytes. We characterize surface pressure hysteresis and demonstrate shear stiffening of the surface caused by area cycling, which we interpret as due to rearrangement and alignment of the rods. We show strong effects of the electrolyte on the assembly of the elementary rods, which can be related to the Hofmeister series and interpreted by effects on the interaction energies mediated by ions and water. Formation of ß-sheet structures and assembly of these into surface-segregated semicrystalline gels was strongly promoted by ammonium sulfate electrolyte. With ammonium sulfate electrolyte as subphase for Langmuir-Blodgett film deposition, shear stiffening by surface area cycling resulted in very compact films on transfer to a substrate.

17.
ACS Appl Mater Interfaces ; 12(35): 39005-39013, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32805904

RESUMO

There is a significant and growing research interest in the isolation of extracellular vesicles (EVs) from large volumes of biological samples and their subsequent concentration into clean and small volumes of buffers, especially for applications in medical diagnostics. Materials that are easily incorporated into simple sampling devices and which allow the release of EVs without the need for auxiliary and hence contaminating reagents are particularly in demand. Herein, we report on the design and fabrication of a flexible, microporous, electrochemically switchable cloth that addresses the key challenges in diagnostic applications of EVs. We demonstrate the utility of our electrochemically switchable substrate for the fast, selective, nondestructive, and efficient capture and subsequent release of EVs. The substrate consists of an electrospun cloth, infused with a conducting polymer and decorated with gold particles. Utilizing gold-sulfur covalent bonding, the electrospun substrates may be functionalized with SH-terminated aptamer probes selective to EV surface proteins. We demonstrate that EVs derived from primary human dermal fibroblast (HDFa) and breast cancer (MCF-7) cell lines are selectively captured with low nonspecific adsorption using an aptamer specific to the CD63 protein expressed on the EV membranes. The specific aptamer-EV interactions enable easy removal of the nonspecifically bound material through washing steps. The conducting polymer component of the cloth provides a means for efficient (>92%) and fast (<5 min) electrochemical release of clean and intact captured EVs by cathodic cleavage of the Au-S bond. We demonstrate successful capture of diluted EVs from a large volume sample and their release into a small volume of clean phosphate-buffered saline buffer. The developed cloth can easily be incorporated into different designs for separation systems and would be adaptable to other biological entities including cells and other EVs. Furthermore, the capture/release capability holds great promise for liquid biopsies if used to targeted disease-specific markers.


Assuntos
Técnicas Eletroquímicas/métodos , Vesículas Extracelulares/química , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/química , Linhagem Celular , Vesículas Extracelulares/metabolismo , Ouro/química , Humanos , Células MCF-7 , Polímeros/química , Porosidade , Enxofre/química , Tetraspanina 30/metabolismo
18.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599753

RESUMO

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Assuntos
Antivirais/farmacologia , Benzopiranos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Amantadina/farmacologia , Animais , Antivirais/química , Cães , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Histidina/química , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Replicação Viral/efeitos dos fármacos
19.
Acta Biomater ; 114: 233-243, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32682054

RESUMO

The effect of installing different lipid chains (C6, C8, C10, and C16) on the N-terminus of an octapeptide derived from the antiparallel ß-interface of the diaminopimelate decarboxylase protein homotetramer has been investigated. Notably, the C8 peptide conjugate assembled into wide twisted nanoribbons and formed hydrogels, which to the best of our knowledge constitutes the first example of a peptide containing an eight carbon alkyl chain that demonstrates these properties, a space typically occupied by peptide amphiphiles with long lipid chains. Furthermore, this self-assembling lipopeptide exhibited pH and temperature stability with shear thinning properties suitable for biomedical applications. Importantly, in this work the application of the polystyrene-based sorbent Diaion™ HP20SS for the simple large-scale purification of self-assembling peptides is presented as an alternative to the use of time-consuming and labor-intensive reverse-phase high-performance liquid chromatography. STATEMENT OF SIGNIFICANCE: Peptides that can self-assemble into defined nanostructures are highly attractive for many biomedical applications given their unique physical and chemical properties. It is recognized that self-assembling peptides derived from naturally occurring proteins offer an unlimited source of functionalities and structures, which are hard to uncover with designed sequences. In this study, we have investigated the effect of installing different lipids chains on the N-terminus of an octapeptide derived from the antiparallel ß-interface of the diaminopimelate decarboxylase protein homo tetramer. We also reported the use of polymeric DiaionⓇ HP20SS beads as an alternative solid support to purify self-assembling peptides.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Hidrogéis , Lipopeptídeos
20.
Soft Matter ; 16(28): 6563-6571, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32588868

RESUMO

Increased water solubility and long-range intermolecular ordering have been introduced into the fluorescent organic molecule thiophene-diketopyrrolopyrrole (TDPP) via its conjugation to the octapeptide HEFISTAH, which is derived from the protein-protein ß-interface of the homo-tetramer protein diaminopimelate decarboxylase. The octapeptide, and its TDPP mono- and cross-linked conjugates were synthesised using 9-fluorenylmethoxycarbonyl (Fmoc) based solid-phase peptide synthesis (SPPS). Unlike the unmodified peptide, the resulting mono-linked and cross-linked peptides showed a fibrous morphology and formed hydrogels at 4 wt% in water at neutral pH, but failed to assemble at pH 2 and pH 9. Further peptide characterization showed that the TDPP organic core enhances peptide self-assembly and that both peptides assembled into fibers with a parallel ß-sheet structure. Furthermore, UV-vis spectroscopic analysis suggests that the TDPP molecules form H-type aggregates where the chromophores are likely to be co-facially packed, but rotationally and/or laterally offset from one another. This intermolecular coupling indicates that π-π stacking interactions are highly likely - a favourable sign for charge transport. The enhanced aqueous solubility and self-assembling properties of the TDPP-peptide conjugates allowed the successful preparation of thin films. Atomic force microscopy, X-ray diffraction and UV-vis spectroscopic analysis of these thin films revealed that the hybrid materials retained a fibrous morphology, ß-sheet structures and strong intermolecular coupling between neighbouring TDPP molecules. These results open an exciting avenue for bio-organic materials development, through structural and electronic tuning of the TDPP core.


Assuntos
Peptídeos , Pirróis , Hidrogéis , Concentração de Íons de Hidrogênio , Cetonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...