Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 4511, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586067

RESUMO

Colloidal quantum wells are two-dimensional materials grown with atomically-precise thickness that dictates their electronic structure. Although intersubband absorption in epitaxial quantum wells is well-known, analogous observations in non-epitaxial two-dimensional materials are sparse. Here we show that CdSe nanoplatelet quantum wells have narrow (30-200 meV), polarized intersubband absorption features when photoexcited or under applied bias, which can be tuned by thickness across the near-infrared (NIR) spectral window (900-1600 nm) inclusive of important telecommunications wavelengths. By examination of the optical absorption and polarization-resolved measurements, the NIR absorptions are assigned to electron intersubband transitions. Under photoexcitation, the intersubband features display hot carrier and Auger recombination effects similar to excitonic absorptions. Sequenced two-color photoexcitation permits the sub-picosecond modulation of the carrier temperature in such colloidal quantum wells. This work suggests that colloidal quantum wells may be promising building blocks for NIR technologies.

2.
J Am Chem Soc ; 141(13): 5092-5096, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30882213

RESUMO

Zero-dimensional PbSe quantum dots are heterogeneously nucleated and grown onto two-dimensional zincblende CdSe nanoplatelets. Electron microscopy shows ad-grown dots predominantly decorate edges and corners of the nanoplatelets. Spectroscopic characterizations relate type I electronic alignment as demonstrated via photoluminescence excitation spectroscopy enhancement of near-infrared emission. Transient photoluminescence and absorption convey ultrafast transfer of excitons to the lower energy semiconductor dots. These structures combine benefits of large absorption cross sections of nanoplatelets and efficient near-infrared emission of PbSe with quantum confinement tuning of energy gap.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA