Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(12): 8756-8764, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35671187

RESUMO

Water reuse is expanding due to increased water scarcity. Water reuse facilities treat wastewater effluent to a very high purity level, typically resulting in a product water that is essentially deionized water, often containing less than 100 µg/L organic carbon. However, recent research has found that low-molecular-weight aldehydes, which are toxic electrophiles, comprise a significant fraction of the final organic carbon pool in recycled wastewater in certain treatment configurations. In this manuscript, we demonstrate oxidation of trace aqueous aldehydes to their corresponding acids using a heterogeneous catalyst (5% Pt on C), with ambient dissolved oxygen serving as the terminal electron acceptor. Mass balances are essentially quantitative across a range of aldehydes, and pseudo-first-order reaction kinetics are observed in batch reactors, with kobs varying from 0.6 h-1 for acetaldehyde to 4.6 h-1 for hexanal, while they are low for unsaturated aldehydes. Through kinetic and isotopic labeling experiments, we demonstrate that while oxygen is essential for the reaction to proceed, it is not involved in the rate-limiting step, and the reaction appears to proceed primarily through a base-promoted ß-hydride elimination mechanism from the hydrated gem-diol form of the corresponding aldehyde. This is the first report we are aware of that demonstrates useful abiotic oxidation of a trace organic contaminant using dissolved oxygen.


Assuntos
Oxigênio , Águas Residuárias , Aldeídos , Carbono , Oxirredução , Água
2.
Chem Sci ; 13(11): 3208-3215, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35414876

RESUMO

Oxide dissolution is important for metal extraction from ores and has become an attractive route for the preparation of inks for thin film solution deposition; however, oxide dissolution is often kinetically challenging. While binary "alkahest" systems comprised of thiols and N-donor species, such as amines, are known to dissolve a wide range of oxides, the mechanism of dissolution and identity of the resulting solute(s) remain unstudied. Here, we demonstrate facile dissolution of both bulk synthetic and natural mineral ZnO samples using an "alkahest" that operates via reaction with thiophenol and 1-methylimidazole (MeIm) to give a single, pseudotetrahedral Zn(SPh)2(MeIm)2 molecular solute identified by X-ray crystallography. The kinetics of ZnO dissolution were measured using solution 1H NMR, and the reaction was found to be zero-order in the presence of excess ligands, with more electron withdrawing para-substituted thiophenols resulting in faster dissolution. A negative entropy of activation was measured by Eyring analysis, indicating associative ligand binding in, or prior to, the rate determining step. Combined experimental and computational surface binding studies on ZnO reveal stronger, irreversible thiophenol binding compared to MeIm, leading to a proposed dissolution mechanism initiated by thiol binding to the ZnO surface with the liberation of water, followed by alternating MeIm and thiolate ligand additions, and ultimately cleavage of the ligated zinc complex from the ZnO surface. Design rules garnered from the mechanistic insight provided by this study should inform the dissolution of other bulk oxides into inks for solution processed thin films.

3.
Nat Commun ; 12(1): 5331, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504075

RESUMO

An ongoing challenge in the study of quantum materials, is to reveal and explain collective quantum effects in spin systems where interactions between different modes types are important. Here we approach this problem through a combined experimental and theoretical study of interacting transverse and longitudinal modes in an easy-plane quantum magnet near a continuous quantum phase transition. Our inelastic neutron scattering measurements of Ba2FeSi2O7 reveal the emergence, decay, and renormalization of a longitudinal mode throughout the Brillouin zone. The decay of the longitudinal mode is particularly pronounced at the zone center. To account for the many-body effects of the interacting low-energy modes in anisotropic magnets, we generalize the standard spin-wave theory. The measured mode decay and renormalization is reproduced by including all one-loop corrections. The theoretical framework developed here is broadly applicable to quantum magnets with more than one type of low energy mode.

4.
Phys Rev Lett ; 125(16): 167201, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33124855

RESUMO

We present a comprehensive neutron scattering study of the breathing pyrochlore magnet LiGaCr_{4}S_{8}. We observe an unconventional magnetic excitation spectrum with a separation of high- and low-energy spin dynamics in the correlated paramagnetic regime above a spin-freezing transition at 12(2) K. By fitting to magnetic diffuse-scattering data, we parametrize the spin Hamiltonian. We find that interactions are ferromagnetic within the large and small tetrahedra of the breathing pyrochlore lattice, but antiferromagnetic further-neighbor interactions are also essential to explain our data, in qualitative agreement with density-functional-theory predictions [Ghosh et al., npj Quantum Mater. 4, 63 (2019)2397-464810.1038/s41535-019-0202-z]. We explain the origin of geometrical frustration in LiGaCr_{4}S_{8} in terms of net antiferromagnetic coupling between emergent tetrahedral spin clusters that occupy a face-centered-cubic lattice. Our results provide insight into the emergence of frustration in the presence of strong further-neighbor couplings, and a blueprint for the determination of magnetic interactions in classical spin liquids.

5.
Dalton Trans ; 49(30): 10509-10515, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32748911

RESUMO

Three complexes based on an Ir-M (M = FeII, CoII, and NiII) heterobimetallic core and 2-(diphenylphosphino)pyridine (Ph2PPy) ligand were synthesized via the reaction of trans-[IrCl(CO)(Ph2PPy)2] and the corresponding metal chloride. Their structures were established by single-crystal X-ray diffraction as [Ir(CO)(µ-Cl)(µ-Ph2PPy)2FeCl2]·2CH2Cl2 (2), [IrCl(CO)(µ-Ph2PPy)2CoCl2]·2CH2Cl2 (3), and [Ir(CO)(µ-Cl)(µ-Ph2PPy)2NiCl2]·2CH2Cl2 (4). Time-dependent DFT computations suggest a donor-acceptor interaction between a filled 5dz2 orbital on iridium and an empty orbital on the first-row metal atom, which is supported by UV-vis studies. Magnetic moment measurements show that the first-row metals are in their high-spin electronic configurations. Cyclic voltammetry data show that all the complexes undergo irreversible decomposition upon either reduction or oxidation. Reduction of 4 proceeds through an ECE mechanism. While these complexes are not stable to electrocatalysis conditions, the data presented here refine our understanding of the bonding synergies of the first-row and third-row metals.

6.
Org Lett ; 22(13): 4979-4984, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32558575

RESUMO

We report a pyridyl-phosphine ruthenium(II) catalyzed tandem alcohol amination/Pictet-Spengler reaction sequence to synthesize tetrahydro-ß-carbolines from an alcohol and tryptamine. Our conditions use a Lewis acid cocatalyst, In(OTf)3, that is compatible with typically base catalyzed amination and an acid catalyzed Pictet-Spengler cyclization. This method proceeds well with benzylic alcohols, heterocyclic carbinols, and aliphatic alcohols. We also show how combining this reaction with a subsequent cycloamination enables a direct synthesis of tetracyclic alkaloids like harmicine.


Assuntos
Rutênio/química , Álcoois/química , Aminação , Catálise , Triptaminas/química
7.
Polyhedron ; 1822020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32410767

RESUMO

We report iridium catalysts IrCl(η5-Cp*)(κ2-(2-pyridyl)CH2NSO2C6H4X) (1-Me, X = CH3 and 1-F, X = F) for transfer hydrogenation of ketones with 2-propanol that operate by a previously unseen metal-ligand cooperative mechanism. Under the reaction conditions, complexes 1 (1-Me and 1-F) derivatize to a series of catalytic intermediates: Ir(η5-Cp*)(κ2-(C5H4N)CHNSO2Ar) (2), IrH(η5Cp*)(κ2-(2-pyridyl)CH2NSO2Ar) (3), and Ir(η5-Cp*)(κ3-(2-pyridyl)CH2NSO2Ar) (4). The structures of 1-Me and 4-Me were established by single-crystal X-ray diffraction. A rate-determining, concerted hydrogen transfer step (2 + R2CHOH ⇄ 3 + R2CO) is suggested by kinetic isotope effects, Eyring parameters (ΔH ≠ = 29.1(8) kcal mol-1 and ΔS ≠ = -17(19) eu), proton-hydride fidelity, and DFT calculations. According to DFT, a nine-membered cyclic transition state is stabilized by an alcohol molecule that serves as a proton shuttle.

8.
Nanoscale ; 12(4): 2764-2772, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31956879

RESUMO

As surface ligands play a critical role in the colloidal stability and optoelectronic properties of semiconductor nanocrystals, we used solution NMR experiments to investigate the surface coordination chemistry of Ge nanocrystals synthesized by a microwave-assisted reduction of GeI2 in oleylamine. The as-synthesized Ge nanocrystals are coordinated to a fraction of strongly bound oleylamide ligands (with covalent X-type Ge-NHR bonds) and a fraction of more weakly bound (or physisorbed) oleylamine, which readily exchanges with free oleylamine in solution. The fraction of strongly bound oleylamide ligands increases with increasing synthesis temperature, which also correlates with better colloidal stability. Thiol and carboxylic acid ligands bind to the Ge nanocrystal surface only upon heating, suggesting a high kinetic barrier to surface binding. These incoming ligands do not displace native oleylamide ligands but instead appear to coordinate to open surface sites, confirming that the as-prepared nanocrystals are not fully passivated. These findings will allow for a better understanding of the surface chemistry of main group nanocrystals and the conditions necessary for ligand exchange to ultimately maximize their functionality.

9.
Curr Med Chem ; 27(9): 1501-1514, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30027844

RESUMO

Inflammatory states are among the most common and most treated medical conditions. Inflammation comes along with swelling, pain and uneasiness in using the affected area. Inflammation is not always a simple symptom; more often is part of a defensive response of the body to an external threat or is a sign that the damaged tissue has not healed yet and needs to rest. The management of the pain associated with an inflammatory state could be a tricky task. In fact, most remedies simply quench the pain, leaving the inflammatory state unaltered. This review focuses on sesquiterpene lactones, a class of natural compounds, that represents a future promise in the treatment of inflammation. Sesquiterpene lactones are efficient inhibitors of multiple targets of the inflammatory process. Their natural sources are often ancient remedies with relevant traditional uses in folk medicines. This work also aims to elucidate how these compounds may represent the starting material for the development of new anti-inflammatory drugs.


Assuntos
Inflamação , Anti-Inflamatórios , Edema , Humanos , Lactonas , NF-kappa B , Compostos Fitoquímicos , Sesquiterpenos
10.
Top Catal ; 61(7-8): 704-709, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30288016

RESUMO

Carbon fiber-reinforced polymer (CFRP) materials are widely used in aerospace and recreational equipment, but there is no efficient procedure for their end-of-life recycling. Ongoing work in the chemistry and engineering communities emphasizes recovering carbon fibers from such waste streams by dissolving or destroying the polymer binding. By contrast, our goal is to depolymerize amine-cured epoxy CFRP composites catalytically, thus enabling not only isolation of high-value carbon fibers, but simultaneously opening an approach to recovery of small molecule monomers that can be used to regenerate precursors to new composite resin. To do so will require understanding of the molecular mechanism(s) of such degradation sequences. Prior work has shown the utility of hydrogen peroxide as a reagent to affect epoxy matrix decomposition [1]. Herein we describe the chemical transformations involved in that sequence: the reaction proceeds by oxygen atom transfer to the polymer's linking aniline group, forming an N-oxide intermediate. The polymer is then cleaved by an elimination and hydrolysis sequence. We find that elimination is the slower step. Scandium trichloride is an efficient catalyst for this step, reducing reaction time in homogeneous model systems and neat cured matrix blocks. The conditions can be applied to composed composite materials, from which pristine carbon fibers can be recovered.

11.
ACS Catal ; 8(5): 3754-3763, 2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-30288338

RESUMO

We introduce iridium-based conditions for the conversion of primary alcohols to potassium carboxylates (or carboxylic acids) in the presence of potassium hydroxide and either [Ir(2-PyCH2(C4H5N2))(COD)]OTf (1) or [Ir(2-PyCH2PBu2 t)(COD)]OTf (2). The method provides both aliphatic and benzylic carboxylates in high yield and with outstanding functional group tolerance. We illustrate the application of this method to a diverse variety of primary alcohols, including those involving heterocycles and even free amines. Complex 2 reacts with alcohols to form crystallographically-characterized catalytic intermediates [IrH(η 1,η 3-C8H12)(2-PyCH2PtBu2)] (2a) and [Ir2H3(CO)(2-PyCH2PtBu2){µ-(C5H3N)CH2PtBu2}] (2c). The unexpected similarities in reactivities of 1 and 2 in this reaction, along with synthetic studies on several of our iridium intermediates, enable us to form a general proposal of the mechanisms of catalyst activation that govern the disparate reactivities of 1 and 2, respectively in glycerol and formic acid dehydrogenation. Moreover, careful analysis of the organic intermediates in the oxidation sequence enable new insights into the role of Tishchenko and Cannizzaro reactions in the overall oxidation.

12.
ACS Sustain Chem Eng ; 6(5): 5749-5753, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-30319930

RESUMO

Conversion of vegetable-derived triglycerides to fatty acid methyl esters (FAMEs) is a popular approach to the generation of biodiesel fuels and the basis of a growing industry. Drawbacks of the strategy are that (a) the glycerol backbone of the triglyceride is discarded as waste, and (2) most available natural triglycerides in the U.S. are multi-unsaturated or fully saturated, giving inferior fuel performance and causing engine problems. Here we show that catalysis by iridium complex 1 can address both of these problems through selective reduction of triglycerides high in polyunsaturation. This is realized using hydrogen from methanol or those imbedded in the triglyceride backbone, concurrently generating lactate as a value-added C3 product. Additional methanol or glycerol as a hydrogen source enables reduction of corn and soybean oils to > 80% oleate. The cost of the iridium catalyst is mitigated by its recovery through aqueous extraction. The process can be further driven with a supporting iron-based catalyst for the complete saturation of all olefins. Preparative procedures are established for synthesis and separation of methyl esters of the hydrogenated fatty acids, enabling instant access to upgraded biofuels.

13.
Dalton Trans ; 47(38): 13559-13564, 2018 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-30206593

RESUMO

We previously reported that iridium complex 1a enables the first homogeneous catalytic dehydrogenation of neat formic acid and enjoys unusual stability through millions of turnovers. Binuclear iridium hydride species 5a, which features a provocative C2-symmetric geometry, was isolated from the reaction as a catalyst resting state. By synthesizing and carefully examining the catalytic initiation of a series of analogues to 1a, we establish here a strong correlation between the formation of C2-twisted iridium dimers analogous to 5a and the reactivity of formic acid dehydrogenation: an efficient C2 twist appears unique to 1a and essential to catalytic reactivity.

14.
Angew Chem Int Ed Engl ; 57(36): 11711-11715, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30051545

RESUMO

Cesium lead halide perovskites are an emerging class of quantum dots (QDs) that have shown promise in a variety of applications; however, their properties are highly dependent on their surface chemistry. To this point, the thermodynamics of ligand binding remain unstudied. Herein, 1 H NMR methods were used to quantify the thermodynamics of ligand exchange on CsPbBr3 QDs. Both oleic acid and oleylamine native ligands dynamically interact with the CsPbBr3 QD surface, having individual surface densities of 1.2-1.7 nm-2 . 10-Undecenoic acid undergoes an exergonic exchange equilibrium with bound oleate (Keq =1.97) at 25 °C while 10-undecenylphosphonic acid undergoes irreversible ligand exchange. Undec-10-en-1-amine exergonically exchanges with oleylamine (Keq =2.52) at 25 °C. Exchange occurs with carboxylic acids, phosphonic acids, and amines on CsPbBr3 QDs without etching of the nanocrystal surface; increases in the steady-state PL intensities correlate with more strongly bound conjugate base ligands.

15.
Chem Commun (Camb) ; 54(56): 7711-7724, 2018 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-29888372

RESUMO

Selective hydrogen transfer remains a central research focus in catalysis: hydrogenation and dehydrogenation have central roles, both historical and contemporary, in all aspects of fuel, agricultural, pharmaceutical, and fine chemical synthesis. Our lab has been involved in this area by designing homogeneous catalysts for dehydrogenation and hydrogen transfer that fill needs ranging from on-demand hydrogen storage to fine chemical synthesis. A keen eye toward mechanism has enabled us to develop systems with excellent selectivity and longevity and demonstrate these in a diversity of high-value applications. Here we describe recent work from our lab in these areas that are linked by a central mechanistic trichotomy of catalyst initiation pathways that lead highly analogous precursors to a diversity of useful applications.

16.
Rapid Commun Mass Spectrom ; 31(19): 1633-1640, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28763166

RESUMO

RATIONALE: Methylation protocols commonly call for acidic, hot conditions that are known to promote organic 1 H/2 H exchange in aromatic and aliphatic C-H bonds. Here we tested two such commonly used methods and compared a third that avoids these acidic conditions, to quantify isotope effects with each method and to directly determine acidic-exchange rates relevant to experimental conditions. METHODS: We compared acidic and non-acidic methylation approaches catalyzed by hydrochloric acid, acetyl chloride and EDCI (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide)/DMAP (4-dimethylaminopyridine), respectively. These were applied to two analytes: phthalic acid (an aromatic) and octacosanoic acid (an aliphatic). We analyzed yield by gas chromatography/flame ionization (GC/FID) and hydrogen and carbon isotopic compositions by isotope ratio mass spectrometry (GC/IRMS). We quantified the 1 H/2 H exchange rate on dimethyl phthalate under acidic conditions with proton nuclear magnetic resonance (1 H-NMR) measurements. RESULTS: The δ2 H and δ13 C values and yield were equivalent among the three methods for methyl octacosanoate. The two acidic methods resulted in comparable yield and isotopic composition of dimethyl phthalate; however, the non-acidic method resulted in lower δ2 H and δ13 C values perhaps due to low yields. Concerns over acid-catalyzed 1 H/2 H exchange are unwarranted as the effect was trivial over a 12-h reaction time. CONCLUSIONS: We find product isolation yield and evaporation to be the main concerns in the accurate determination of isotopic composition. 1 H/2 H exchange reactions are too slow to cause measurable isotope fractionation over the typical duration and reaction conditions used in methylation. Thus, we are able to recommend continued use of acidic catalysts in such methylation reactions for both aliphatic and aromatic compounds.

17.
Acc Chem Res ; 50(1): 86-95, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-28032510

RESUMO

One of the greatest challenges in using H2 as a fuel source is finding a safe, efficient, and inexpensive method for its storage. Ammonia borane (AB) is a solid hydrogen storage material that has garnered attention for its high hydrogen weight density (19.6 wt %) and ease of handling and transport. Hydrogen release from ammonia borane is mediated by either hydrolysis, thus giving borate products that are difficult to rereduce, or direct dehydrogenation. Catalytic AB dehydrogenation has thus been a popular topic in recent years, motivated both by applications in hydrogen storage and main group synthetic chemistry. This Account is a complete description of work from our laboratory in ruthenium-catalyzed ammonia borane dehydrogenation over the last 6 years, beginning with the Shvo catalyst and resulting ultimately in the development of optimized, leading catalysts for efficient hydrogen release. We have studied AB dehydrogenation with Shvo's catalyst extensively and generated a detailed understanding of the role that borazine, a dehydrogenation product, plays in the reaction: it is a poison for both Shvo's catalyst and PEM fuel cells. Through independent syntheses of Shvo derivatives, we found a protective mechanism wherein catalyst deactivation by borazine is prevented by coordination of a ligand that might otherwise be a catalytic poison. These studies showed how a bidentate N-N ligand can transform the Shvo into a more reactive species for AB dehydrogenation that minimizes accumulation of borazine. Simultaneously, we designed novel ruthenium catalysts that contain a Lewis acidic boron to replace the Shvo -OH proton, thus offering more flexibility to optimize hydrogen release and take on more general problems in hydride abstraction. Our scorpionate-ligated ruthenium species (12) is a best-of-class catalyst for homogeneous dehydrogenation of ammonia borane in terms of its extent of hydrogen release (4.6 wt %), air tolerance, and reusability. Moreover, a synthetically simplified ruthenium complex supported by the inexpensive bis(pyrazolyl)borate ligand is a comparably good catalyst for AB dehydrogenation, among other reactions. In this Account, we present a detailed, concise description of how our work with the Shvo system progressed to the development of our very reactive and flexible dual-site boron-ruthenium catalysts.

18.
Nat Commun ; 7: 11308, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27076111

RESUMO

Formic acid is a promising energy carrier for on-demand hydrogen generation. Because the reverse reaction is also feasible, formic acid is a form of stored hydrogen. Here we present a robust, reusable iridium catalyst that enables hydrogen gas release from neat formic acid. This catalysis works under mild conditions in the presence of air, is highly selective and affords millions of turnovers. While many catalysts exist for both formic acid dehydrogenation and carbon dioxide reduction, solutions to date on hydrogen gas release rely on volatile components that reduce the weight content of stored hydrogen and/or introduce fuel cell poisons. These are avoided here. The catalyst utilizes an interesting chemical mechanism, which is described on the basis of kinetic and synthetic experiments.


Assuntos
Formiatos/química , Hidrogênio/química , Modelos Químicos , Dióxido de Carbono/química , Catálise , Hidrogenação , Irídio/química , Cinética , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Espectrofotometria Infravermelho , Água/química
19.
Dalton Trans ; 45(18): 7672-7, 2016 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-27052687

RESUMO

Ammonia borane (AB) has high hydrogen density (19.6 wt%), and can, in principle, release up to 3 equivalents of H2 under mild catalytic conditions. A limited number of catalysts are capable of non-hydrolytic dehydrogenation of AB beyond 2 equivalents of H2 under mild conditions, but none of these is shown directly to derivatise borazine, the product formed after 2 equivalents of H2 are released. We present here a high productivity ruthenium-based catalyst for non-hydrolytic AB dehydrogenation that is capable of borazine dehydrogenation, and thus exhibits among the highest H2 productivity reported to date for anhydrous AB dehydrogenation. At 1 mol% loading, (phen)Ru(OAc)2(CO)2 () effects AB dehydrogenation through 2.7 equivalents of H2 at 70 °C, is robust through multiple charges of AB, and is water and air stable. We further demonstrate that catalyst has the ability both to dehydrogenate borazine in isolation and dehydrogenate AB itself. This is important, both because borazine derivatisation is productivity-limiting in AB dehydrogenation and because borazine is a fuel cell poison that is commonly released in H2 production from this medium.

20.
Polyhedron ; 84: 24-31, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25435645

RESUMO

Rhodium(I) and Iridium(I) borate complexes of the structure [Me2B(2-py)2]ML2 (L2 = (tBuNC)2, (CO)2, (C2H4)2, cod, dppe) were prepared and structurally characterized (cod = 1,5-cyclooctadiene; dppe = 1,2-diphenylphosphinoethane). Each contains a boat-configured chelate ring that participates in a boat-to-boat ring flip. Computational evidence shows that the ring flip proceeds through a transition state that is near planarity about the chelate ring. We observe an empirical, quantitative correlation between the barrier of this ring flip and the π acceptor ability of the ancillary ligand groups on the metal. The ring flip barrier correlates weakly to the Tolman and Lever ligand parameterization schemes, apparently because these combine both σ and π effects while we propose that the ring flip barrier is dominated by π bonding. This observation is consistent with metal-ligand π interactions becoming temporarily available only in the near-planar transition state of the chelate ring flip and not the boat-configured ground state. Thus, this is a first-of-class observation of metal-ligand π bonding governing conformational dynamics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...