Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33205449

RESUMO

The non-vitamin K antagonist oral anticoagulant rivaroxaban is used in several thromboembolic disorders. Rivaroxaban is eliminated via both metabolic degradation and renal elimination as unchanged drug. Therefore, renal and hepatic impairment may reduce rivaroxaban clearance, and medications inhibiting these clearance pathways could lead to drug-drug interactions. This physiologically based pharmacokinetic (PBPK) study investigated the pharmacokinetic behavior of rivaroxaban in clinical situations where drug clearance is impaired. A PBPK model was developed using mass balance and bioavailability data from adults and qualified using clinically observed data. Renal and hepatic impairment were simulated by adjusting disease-specific parameters, and concomitant drug use was simulated by varying enzyme activity in virtual populations (n = 1000) and compared with pharmacokinetic predictions in virtual healthy populations and clinical observations. Rivaroxaban doses of 10 mg or 20 mg were used. Mild to moderate renal impairment had a minor effect on area under the concentration-time curve and maximum plasma concentration of rivaroxaban, whereas severe renal impairment caused a more pronounced increase in these parameters vs normal renal function. Area under the concentration-time curve and maximum plasma concentration increased with severity of hepatic impairment. These effects were smaller in the simulations compared with clinical observations. AUC and Cmax increased with the strength of cytochrome P450 3A4 and P-glycoprotein inhibitors in simulations and clinical observations. This PBPK model can be useful for estimating the effects of impaired drug clearance on rivaroxaban pharmacokinetics. Identifying other factors that affect the pharmacokinetics of rivaroxaban could facilitate the development of models that approximate real-world pharmacokinetics more accurately.

2.
J Thromb Thrombolysis ; 50(1): 12-19, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32323190

RESUMO

Anticoagulant plasma concentrations and patient characteristics might affect the benefit-risk balance of therapy. The study objective was to assess the impact of model-predicted rivaroxaban exposure and patient characteristics on outcomes in patients receiving rivaroxaban for venous thromboembolism (VTE) prophylaxis (VTE-P) after hip/knee replacement surgery. Post hoc exposure-response analyses were conducted using data from the phase 3 RECORD1-4 studies, in which 12,729 patients were randomized to rivaroxaban 10 mg once daily or enoxaparin for ≤ 39 days. Multivariate regression approaches were used to correlate model-predicted individual rivaroxaban exposures and patient characteristics with outcomes. In the absence of measured rivaroxaban exposure, exposure estimates were predicted based on individual increases in prothrombin time (PT) and by making use of the known correlation between rivaroxaban plasma concentration and dynamics of PT. No significant associations between rivaroxaban exposure and total VTE or major bleeding were identified. A significant association between exposure and a composite of major or non-major clinically relevant (NMCR) bleeding from day 4 after surgery was observed. The relationship was shallow, with an approximate predicted absolute increase in a composite of major or NMCR bleeding from 1.08 [95% confidence interval (CI) 0.76-1.54] to 2.18% (95% CI 1.51-3.17) at the 5th and 95th percentiles of trough plasma concentration, respectively. In conclusion, based on the underlying data and analysis, no reliable target window for exposure with improved benefit-risk could be identified within the investigated exposure range. Hence, monitoring rivaroxaban levels is unlikely to be beneficial in VTE-P.

3.
J Thromb Thrombolysis ; 50(1): 1-11, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32323191

RESUMO

Anticoagulant plasma concentrations and patient characteristics might affect the benefit-risk balance of therapy. This study assessed the impact of model-predicted rivaroxaban exposure and patient characteristics on outcomes in patients receiving rivaroxaban for venous thromboembolism treatment (VTE-T) using data from the phase 3 EINSTEIN-DVT and EINSTEIN-PE studies. In the absence of measured rivaroxaban exposure, exposure estimates were predicted based on individual increases in prothrombin time (PT) and the known correlation between rivaroxaban plasma concentrations and PT dynamics. The composite efficacy outcomes evaluated were recurrent deep-vein thrombosis (DVT) and pulmonary embolism (PE) and recurrent DVT, PE and all-cause death; safety outcomes were major bleeding and the composite of major or non-major clinically relevant (NMCR) bleeding. Exposure-response relationships were evaluated using multivariate logistic and Cox regression for the twice-daily (BID) and once-daily (OD) dosing periods, respectively. Predicted rivaroxaban exposure and CrCl were significantly associated with both efficacy outcomes in the BID period. In the OD period, exposure was significantly associated with recurrent DVT and PE but not recurrent DVT, PE and all-cause death. The statistically significant exposure-efficacy relationships were shallow. Exposure-safety relationships were absent within the investigated exposure range. During both dosing periods, low baseline hemoglobin and prior bleeding were associated with the composite of major or NMCR bleeding. In conclusion, based on the underlying data and analysis, no reliable target window for exposure with improved benefit-risk could be identified within the investigated exposure range. Therefore, monitoring rivaroxaban levels is unlikely to be beneficial in VTE-T.

4.
J Thromb Thrombolysis ; 50(1): 20-29, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32323192

RESUMO

Rivaroxaban exposure and patient characteristics may affect the rivaroxaban benefit-risk balance. This study aimed to quantify associations between model-predicted rivaroxaban exposure and patient characteristics and efficacy and safety outcomes in patients with non-valvular atrial fibrillation (NVAF), using data from the phase 3 ROCKET AF trial (NCT00403767). In ROCKET AF, 14,264 patients with NVAF were randomized to rivaroxaban (20 mg once daily [OD], or 15 mg OD if creatinine clearance was 30-49 mL/min) or dose-adjusted warfarin (median follow-up: 707 days); rivaroxaban plasma concentration was measured in a subset of 161 patients. In this post hoc exposure-response analysis, a multivariate Cox model was used to correlate individual predicted rivaroxaban exposures and patient characteristics with time-to-event efficacy and safety outcomes in 7061 and 7111 patients, respectively. There was no significant association between model-predicted rivaroxaban trough plasma concentration (Ctrough) and efficacy outcomes. Creatinine clearance and history of stroke were significantly associated with efficacy outcomes. Ctrough was significantly associated with the composite of major or non-major clinically relevant (NMCR) bleeding (hazard ratio [95th percentile vs. median]: 1.26 [95% confidence interval 1.13-1.40]) but not with major bleeding alone. The exposure-response relationship for major or NMCR bleeding was shallow with no clear threshold for an acceleration in risk. History of gastrointestinal bleeding had a greater influence on safety outcomes than Ctrough. These results support fixed rivaroxaban 15 mg and 20 mg OD dosages in NVAF. Therapeutic drug monitoring is unlikely to offer clinical benefits in this indication beyond evaluation of patient characteristics.

5.
J Thromb Haemost ; 18(7): 1672-1685, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32246743

RESUMO

BACKGROUND: Recently, the randomized EINSTEIN-Jr study showed similar efficacy and safety for rivaroxaban and standard anticoagulation for treatment of pediatric venous thromboembolism (VTE). The rivaroxaban dosing strategy was established based on phase 1 and 2 data in children and through pharmacokinetic (PK) modeling. METHODS: Rivaroxaban treatment with tablets or the newly developed granules-for-oral suspension formulation was bodyweight-adjusted and administered once-daily, twice-daily, or thrice-daily for children with bodyweights of ≥30, ≥12 to <30, and <12 kg, respectively. Previously, these regimens were confirmed for children weighing ≥20 kg but only predicted in those <20 kg. Based on sparse blood sampling, the daily area under the plasma concentration-time curve [AUC(0-24)ss ] and trough [Ctrough,ss ] and maximum [Cmax,ss ] steady-state plasma concentrations were derived using population PK modeling. Exposure-response graphs were generated to evaluate the potential relationship of individual PK parameters with recurrent VTE, repeat imaging outcomes, and bleeding or adverse events. A taste-and-texture questionnaire was collected for suspension-recipients. RESULTS: Of the 335 children (aged 0-17 years) allocated to rivaroxaban, 316 (94.3%) were evaluable for PK analyses. Rivaroxaban exposures were within the adult exposure range. No clustering was observed for any of the PK parameters with efficacy, bleeding, or adverse event outcomes. Results were similar for the tablet and suspension formulation. Acceptability and palatability of the suspension were favorable. DISCUSSION: Based on this analysis and the recently documented similar efficacy and safety of rivaroxaban compared with standard anticoagulation, we conclude that bodyweight-adjusted pediatric rivaroxaban regimens with either tablets or suspension are validated and provide for appropriate treatment of children with VTE.

6.
J Clin Pharmacol ; 59 Suppl 1: S95-S103, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31502689

RESUMO

Food and Drug Administration submissions of physiologically based pharmacokinetic (PBPK) modeling and simulation of small-molecule drugs document the relevance of pediatric drug development and, in particular, information on dosing strategies in children. The most relevant prerequisite for reliable PBPK-based translation of adult pharmacokinetics of a small molecule to children is knowledge of the drug-specific absorption, distribution, metabolism, and elimination (ADME) processes in adults together with existing information about ontogeny of ADME processes relevant for the drug. All mechanisms driving a drug's clearance are of specific importance. For other drug modalities, our knowledge of ADME processes and ontogeny is still limited. More research is required, for example, to understand why some therapeutic proteins show complex differences in pharmacokinetics between adults and children, whereas other proteins seem to follow simple allometric scaling rules. Ontogeny information originates from various sources, such as (semi)quantitative mRNA expression, in vitro activity data, and deconvolution of in vivo pharmacokinetic data. The workflow for pediatric predictions is well described in several articles documenting successful translation from adults to children. The technical hurdles for PBPK modeling are low. State-of-the-art PBPK modeling software tools provide integrated pediatric translation workflows. For example, PK-Sim and MoBi are freely available as fully transparent open-source software via Open Systems Pharmacology (OSP). With the latest 2019 software release, version 8.0, OSP even provides a fully integrated technical framework for the qualification (and requalification) of any specific intended PBPK use in line with Food and Drug Administration and European Medicines Agency PBPK guidance. Qualification packages for pediatric translation are available on the OSP platform.

7.
Lancet Haematol ; 6(10): e500-e509, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31420317

RESUMO

BACKGROUND: Rivaroxaban has been shown to be efficacious for treatment of venous thromboembolism in adults, and has a reduced risk of bleeding compared with standard anticoagulants. We aimed to develop paediatric rivaroxaban regimens for the treatment of venous thromboembolism in children and adolescents. METHODS: In this phase 2 programme, we did three studies to evaluate rivaroxaban treatment in children younger than 6 months, aged 6 months to 5 years, and aged 6-17 years. Our studies used a multicentre, single-arm design at 54 sites in Australia, Europe, Israel, Japan, and north America. We included children with objectively confirmed venous thromboembolism previously treated with low-molecular weight heparin, fondaparinux, or a vitamin K antagonist for at least 2 months or, in children who had catheter-related venous thromboembolism for at least 6 weeks. We administered rivaroxaban orally in a bodyweight-adjusted 20 mg-equivalent dose, based on physiologically-based pharmacokinetic modelling predictions and EINSTEIN-Jr phase 1 data in young adults, in either a once-daily (tablets; for those aged 6-17 years), twice-daily (in suspension; for those aged 6 months to 11 years), or three times-daily (in suspension; for those younger than 6 months) dosing regimen for 30 days (or 7 days for those younger than 6 months). The primary aim was to define rivaroxaban treatment regimens that match the target adult exposure range. The principal safety outcome was major bleeding and clinically relevant non-major bleeding. Analyses were per-protocol. The predefined efficacy outcomes were symptomatic recurrent venous thromboembolism, asymptomatic deterioration on repeat imaging at the end of the study treatment period. These trials are registered at ClinicalTrials.gov, numbers NCT02564718, NCT02309411, and NCT02234843. FINDINGS: Between Feb 11, 2013, and Dec 20, 2017, we enrolled 93 children (ten children younger than 6 months; 15 children aged 6 months to 1 year; 25 children aged 2-5 years; 32 children aged 6-11 years; and 11 children aged 12-17 years) into our study. 89 (96%) children completed study treatment (30 days of treatment, or 7 days in those younger than 6 months), and 93 (100%) children received at least one dose of study treatment and were evaluable for the primary endpoints. None of the children had a major bleed, and four (4%, 95% CI 1·2-10·6) of these children had a clinically relevant non-major bleed (three children aged 12-17 years with menorrhagia and one child aged 6-11 years with gingival bleeding). We found no symptomatic recurrent venous thromboembolism in any patients (0%, 0·0-3·9). 24 (32%) of 75 patients with repeat imaging had their thrombotic burden resolved, 43 (57%) patients improved, and eight (11%) patients were unchanged. No patient deteriorated. We confirmed therapeutic rivaroxaban exposures with once-daily dosing in children with bodyweights of at least 30 kg and with twice-daily dosing in children with bodyweights of at least 20 kg and less than 30 kg. Children with low bodyweights (<20 kg, particularly <12 kg) showed low exposures so, for future studies, rivaroxaban dosages were revised for these weight categories, to match the target adult exposure range. 61 (66%) of 93 children had adverse events during the study. Pyrexia was the most common adverse event (ten [11%] events), and anaemia and neutropenia or febrile neutropenia were the most frequent grade 3 or worse events (four [4%] events each). No children died or were discontinued from rivaroxaban because of adverse events. INTERPRETATION: Treatment with bodyweight-adjusted rivaroxaban appears to be safe in children. The treatment regimens that we confirmed in children with bodyweights of at least 20 kg and the revised treatment regimens that we predicted in those with bodyweights less than 20 kg will be evaluated in the EINSTEIN-Jr phase 3 trial in children with acute venous thromboembolism. FUNDING: Bayer AG, Janssen Research and Development.


Assuntos
Anticoagulantes/uso terapêutico , Rivaroxabana/uso terapêutico , Tromboembolia Venosa/tratamento farmacológico , Adolescente , Anemia/etiologia , Anticoagulantes/efeitos adversos , Anticoagulantes/farmacocinética , Peso Corporal , Criança , Pré-Escolar , Esquema de Medicação , Cálculos da Dosagem de Medicamento , Fator Xa/análise , Feminino , Meia-Vida , Hemorragia/etiologia , Humanos , Lactente , Masculino , Neutropenia/etiologia , Tempo de Protrombina , Rivaroxabana/efeitos adversos , Rivaroxabana/farmacocinética , Resultado do Tratamento , Tromboembolia Venosa/patologia
8.
Ther Adv Cardiovasc Dis ; 13: 1753944719863641, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31364490

RESUMO

BACKGROUND: This analysis aimed to evaluate the impact of rivaroxaban exposure and patient characteristics on efficacy and safety outcomes in patients with acute coronary syndrome (ACS) and to determine whether therapeutic drug monitoring might provide additional information regarding rivaroxaban dose, beyond what patient characteristics provide. METHODS: A post hoc exposure-response analysis was conducted using data from the phase III ATLAS ACS 2 Thrombolysis in Myocardial Infarction (TIMI) 51 study, in which 15,526 randomized ACS patients received rivaroxaban (2.5 mg or 5 mg twice daily) or placebo for a mean of 13 months (maximum follow up: 31 months). A multivariate Cox model was used to correlate individual predicted rivaroxaban exposures and patient characteristics with time-to-event clinical outcomes. RESULTS: For the incidence of myocardial infarction (MI), ischemic stroke, or nonhemorrhagic cardiovascular death, hazard ratios (HRs) for steady-state maximum plasma concentration (Cmax) in the 5th and 95th percentiles versus the median were statistically significant but close to 1 for both rivaroxaban doses. For TIMI major bleeding events, a statistically significant association was observed with Cmax [HR, 1.08; 95% CI, 1.06-1.11 (95th percentile versus median, 2.5 mg twice daily)], sex [HR, 0.56; 95% CI, 0.38-0.84 (female versus male)], and previous revascularization [HR, 0.62; 95% CI, 0.44-0.87 (no versus yes)]. CONCLUSIONS: The shallow slopes of the exposure-response relationships and the lack of a clear therapeutic window render it unlikely that therapeutic drug monitoring in patients with ACS would provide additional information regarding rivaroxaban dose beyond that provided by patient characteristics.


Assuntos
Síndrome Coronariana Aguda/tratamento farmacológico , Inibidores do Fator Xa/administração & dosagem , Modelos Biológicos , Rivaroxabana/administração & dosagem , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/diagnóstico , Síndrome Coronariana Aguda/mortalidade , Idoso , Isquemia Encefálica/mortalidade , Tomada de Decisão Clínica , Ensaios Clínicos Fase III como Assunto , Relação Dose-Resposta a Droga , Cálculos da Dosagem de Medicamento , Monitoramento de Medicamentos , Inibidores do Fator Xa/efeitos adversos , Inibidores do Fator Xa/farmacocinética , Feminino , Hemorragia/induzido quimicamente , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/mortalidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Medição de Risco , Fatores de Risco , Rivaroxabana/efeitos adversos , Rivaroxabana/farmacocinética , Acidente Vascular Cerebral/mortalidade , Resultado do Tratamento
9.
CPT Pharmacometrics Syst Pharmacol ; 8(11): 805-814, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31276324

RESUMO

Prothrombin time (PT) is a measure of coagulation status and was assessed in the majority of patients in the rivaroxaban phase II and III clinical trials as a pharmacodynamic marker. In the absence of sufficient phase III pharmacokinetic (PK) data to provide individual exposure measures for input into rivaroxaban exposure-response analyses, the aim of the present study was to investigate the use of PT-adjustment approaches (i.e., the use of observed individual PT measurements) to enhance the prediction of individual rivaroxaban exposure metrics (derived using a previously developed integrated population PK model) based on the observed linear relationship between PT and rivaroxaban plasma concentrations. The PT-adjustment approaches were established using time-matched PK and PT measurements, which were available from 1,779 patients across four phase II trials and one phase III trial of rivaroxaban. PT-adjusted exposure estimates improved the identification of statistically significant effects when compared with covariate-only exposure estimates.

10.
CPT Pharmacometrics Syst Pharmacol ; 8(9): 654-663, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31310051

RESUMO

Moxifloxacin is a widely used fluoroquinolone for the treatment of complicated intra-abdominal infections. We applied physiologically-based pharmacokinetic (PBPK) and population pharmacokinetic (popPK) modeling to support dose selection in pediatric patients. We scaled an existing adult PBPK model to children based on prior physiological knowledge. The resulting model proposed an age-dependent dosing regimen that was tested in a phase I study. Refined doses were then tested in a phase III study. A popPK analysis of all clinical pediatric data confirmed the PBPK predictions, including the proposed dosing schedule in children, and supported pharmacokinetics-related safety/efficacy questions. The pediatric PBPK model adequately predicted the doses necessary to achieve antimicrobial efficacy while maintaining safety in the phase I and III pediatric studies. Altogether, this study retroactively demonstrated the robustness and utility of modeling to support dose finding and confirmation in pediatric drug development for moxifloxacin.

11.
J Clin Pharmacol ; 59(5): 654-667, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30681729

RESUMO

The pharmacokinetics, safety, and tolerability of a single dose of moxifloxacin were characterized in 31 pediatric patients already receiving antibiotics for a suspected or proven infection in an open-label phase 1 study. A dosing strategy for each age cohort (Cohort 1: ≥6 years to ≤14 years; Cohort 2: ≥2 years to <6 years; Cohort 3: >3 month to <2 years) was developed using physiology-based pharmacokinetic modeling combined with a stepwise dosing scheme to obtain a similar exposure to adults receiving 400 mg of moxifloxacin. Doses, adjusted to body weight and age, were gradually escalated from 5 mg/kg in Cohort 1 to 10 mg/kg in Cohort 3 based on interim analysis of the pharmacokinetic and safety data. Plasma and urine samples before and after the 60-minute infusion were collected for the analysis of moxifloxacin and its metabolites using a validated high-pressure liquid chromatography assay with tandem mass spectrometry. Moxifloxacin and metabolite concentrations in plasma were within the ranges observed in adults; however, clearance of all analytes was lower in pediatric patients compared with adults. Population pharmacokinetic analyses using the achieved exposure levels in the 3 age cohorts (with known body weight and clearance) predicted similar efficacy and safety profiles to adults. Moxifloxacin was well tolerated in all pediatric age cohorts. Adverse events related to moxifloxacin were mild or moderate in intensity and showed no correlation with increased weight-adjusted doses. Our findings guided the selection of age-appropriate clinical doses for a subsequent phase 3 clinical trial in pediatric patients with complicated intra-abdominal infections.

12.
Thromb J ; 16: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534007

RESUMO

Background: The EINSTEIN-Jr program will evaluate rivaroxaban for the treatment of venous thromboembolism (VTE) in children, targeting exposures similar to the 20 mg once-daily dose for adults. Methods: This was a multinational, single-dose, open-label, phase I study to describe the pharmacodynamics (PD), pharmacokinetics (PK) and safety of a single bodyweight-adjusted rivaroxaban dose in children aged 0.5-18 years. Children who had completed treatment for a venous thromboembolic event were enrolled into four age groups (0.5-2 years, 2-6 years, 6-12 years and 12-18 years) receiving rivaroxaban doses equivalent to 10 mg or 20 mg (either as a tablet or oral suspension). Blood samples for PK and PD analyses were collected within specified time windows. Results: Fifty-nine children were evaluated. In all age groups, PD parameters (prothrombin time, activated partial thromboplastin time and anti-Factor Xa activity) showed a linear relationship versus rivaroxaban plasma concentrations and were in line with previously acquired adult data, as well as in vitro spiking experiments. The rivaroxaban pediatric physiologically based pharmacokinetic model, used to predict the doses for the individual body weight groups, was confirmed. No episodes of bleeding were reported, and treatment-emergent adverse events occurred in four children and all resolved during the study. Conclusions: Bodyweight-adjusted, single-dose rivaroxaban had predictable PK/PD profiles in children across all age groups from 0.5 to 18 years. The PD assessments based on prothrombin time and activated partial thromboplastin time demonstrated that the anticoagulant effect of rivaroxaban was not affected by developmental hemostasis in children. Trial registration: ClinicalTrials.gov number, NCT01145859.

13.
Thromb J ; 16: 32, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534008

RESUMO

Background: The EINSTEIN-Jr program will evaluate rivaroxaban for the treatment of venous thromboembolism (VTE) in children, targeting exposures similar to the 20 mg once-daily dose for adults. A physiologically based pharmacokinetic (PBPK) model for pediatric rivaroxaban dosing has been constructed. Methods: We quantitatively assessed the pharmacokinetics (PK) of a single rivaroxaban dose in children using population pharmacokinetic (PopPK) modelling and assessed the applicability of the PBPK model. Plasma concentration-time data from the EINSTEIN-Jr phase I study were analysed by non-compartmental and PopPK analyses and compared with the predictions of the PBPK model. Two rivaroxaban dose levels, equivalent to adult doses of rivaroxaban 10 mg and 20 mg, and two different formulations (tablet and oral suspension) were tested in children aged 0.5-18 years who had completed treatment for VTE. Results: PK data from 59 children were obtained. The observed plasma concentration-time profiles in all subjects were mostly within the 90% prediction interval, irrespective of dose or formulation. The PopPK estimates and non-compartmental analysis-derived PK parameters (in children aged ≥6 years) were in good agreement with the PBPK model predictions. Conclusions: These results confirmed the applicability of the rivaroxaban pediatric PBPK model in the pediatric population aged 0.5-18 years, which in combination with the PopPK model, will be further used to guide dose selection for the treatment of VTE with rivaroxaban in EINSTEIN-Jr phase II and III studies. Trial registration: ClinicalTrials.gov number, NCT01145859; registration date: 17 June 2010.

15.
Clin Pharmacokinet ; 57(12): 1613-1634, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29737457

RESUMO

BACKGROUND: Physiologically-based pharmacokinetic (PBPK) modeling has received growing interest as a useful tool for the assessment of drug pharmacokinetics by continuous knowledge integration. OBJECTIVE: The objective of this study was to build a ciprofloxacin PBPK model for intravenous and oral dosing based on a comprehensive literature review, and evaluate the predictive performance towards pediatric and geriatric patients. METHODS: The aim of this report was to establish confidence in simulations of the ciprofloxacin PBPK model along the development process to facilitate reliable predictions outside of the tested adult age range towards the extremes of ages. Therefore, mean data of 69 published clinical trials were identified and integrated into the model building, simulation and verification process. The predictive performance on both ends of the age scale was assessed using individual data of 258 subjects observed in own clinical trials. RESULTS: Ciprofloxacin model verification demonstrated no concentration-related bias and accurate simulations for the adult age range, with only 4.8% of the mean observed data points for intravenous administration and 12.1% for oral administration being outside the simulated twofold range. Predictions towards the extremes of ages for the area under the plasma concentration-time curve (AUC) and the maximum plasma concentration (Cmax) over the entire span of life revealed a reliable estimation, with only two pediatric AUC observations outside the 90% prediction interval. CONCLUSION: Overall, this ciprofloxacin PBPK modeling approach demonstrated the predictive power of a thoroughly informed middle-out approach towards age groups of interest to potentially support the decision-making process.


Assuntos
Antibacterianos/administração & dosagem , Ciprofloxacino/administração & dosagem , Modelos Biológicos , Administração Intravenosa , Administração Oral , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Antibacterianos/farmacocinética , Área Sob a Curva , Criança , Pré-Escolar , Ciprofloxacino/farmacocinética , Simulação por Computador , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
16.
CPT Pharmacometrics Syst Pharmacol ; 7(5): 309-320, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29660785

RESUMO

The population pharmacokinetics (PK) of rivaroxaban have been evaluated in several population-specific models. We developed an integrated population PK model using pooled data from 4,918 patients in 7 clinical trials across all approved indications. Effects of gender, age, and weight on apparent clearance (CL/F) and apparent volume of distribution (V/F), renal function, and comedication on CL/F, and relative bioavailability as a function of dose (F) were analyzed. Virtual subpopulations for exposure simulations were defined by age, creatinine clearance (CrCL) and body mass index (BMI). Rivaroxaban PK were adequately described by a one-compartment disposition model with a first-order absorption rate constant. Significant effects of CrCL, use of comedications, and study population on CL/F, age, weight, and gender on V/F, and dose on F were identified. CrCL had a modest influence on exposure, whereas age and BMI had a minor influence. The model was suitable to predict rivaroxaban exposure in patient subgroups of special interest.


Assuntos
Rim/efeitos dos fármacos , Rivaroxabana/farmacocinética , Adulto , Peso Corporal , Ensaios Clínicos Fase II como Assunto , Feminino , Humanos , Testes de Função Renal , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Modelos Biológicos , Rivaroxabana/farmacologia
17.
Pediatr Infect Dis J ; 37(8): e207-e213, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29356761

RESUMO

BACKGROUND: This study was designed to evaluate primarily the safety and also the efficacy of moxifloxacin (MXF) in children with complicated intra-abdominal infections (cIAIs). METHODS: In this multicenter, randomized, double-blind, controlled study, 451 pediatric patients aged 3 months to 17 years with cIAIs were treated with intravenous/oral MXF (N = 301) or comparator (COMP, intravenous ertapenem followed by oral amoxicillin/clavulanate; N = 150) for 5 to 14 days. Doses of MXF were selected based on the results of a Phase 1 study in pediatric patients (NCT01049022). The primary endpoint was safety, with particular focus on cardiac and musculoskeletal safety; clinical and bacteriologic efficacy at test of cure was also investigated. RESULTS: The proportion of patients with adverse events (AEs) was comparable between the 2 treatment arms (MXF: 58.1% and COMP: 54.7%). The incidence of drug-related AEs was higher in the MXF arm than in the COMP arm (14.3% and 6.7%, respectively). No cases of QTc interval prolongation-related morbidity or mortality were observed. The proportion of patients with musculoskeletal AEs was comparable between treatment arms; no drug-related events were reported. Clinical cure rates were 84.6% and 95.5% in the MXF and COMP arms, respectively, in patients with confirmed pathogen(s) at baseline. CONCLUSIONS: MXF treatment was well tolerated in children with cIAIs. However, a lower clinical cure rate was observed with MXF treatment compared with COMP. This study does not support a recommendation of MXF for children with cIAIs when alternative more efficacious antibiotics with better safety profile are available.


Assuntos
Antibacterianos/uso terapêutico , Infecções Intra-Abdominais/complicações , Infecções Intra-Abdominais/tratamento farmacológico , Moxifloxacina/uso terapêutico , Administração Intravenosa , Adolescente , Combinação Amoxicilina e Clavulanato de Potássio/efeitos adversos , Combinação Amoxicilina e Clavulanato de Potássio/uso terapêutico , Antibacterianos/efeitos adversos , Criança , Pré-Escolar , Método Duplo-Cego , Feminino , Humanos , Lactente , Infecções Intra-Abdominais/microbiologia , Masculino , Moxifloxacina/efeitos adversos , Estudos Prospectivos
18.
J Pharmacokinet Pharmacodyn ; 45(2): 235-257, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29234936

RESUMO

Proteins are an increasingly important class of drugs used as therapeutic as well as diagnostic agents. A generic physiologically based pharmacokinetic (PBPK) model was developed in order to represent at whole body level the fundamental mechanisms driving the distribution and clearance of large molecules like therapeutic proteins. The model was built as an extension of the PK-Sim model for small molecules incorporating (i) the two-pore formalism for drug extravasation from blood plasma to interstitial space, (ii) lymph flow, (iii) endosomal clearance and (iv) protection from endosomal clearance by neonatal Fc receptor (FcRn) mediated recycling as especially relevant for antibodies. For model development and evaluation, PK data was used for compounds with a wide range of solute radii. The model supports the integration of knowledge gained during all development phases of therapeutic proteins, enables translation from pre-clinical species to human and allows predictions of tissue concentration profiles which are of relevance for the analysis of on-target pharmacodynamic effects as well as off-target toxicity. The current implementation of the model replaces the generic protein PBPK model available in PK-Sim since version 4.2 and becomes part of the Open Systems Pharmacology Suite.


Assuntos
Preparações Farmacêuticas/metabolismo , Proteínas/farmacocinética , Distribuição Tecidual/genética , Animais , Anticorpos Monoclonais/metabolismo , Endossomos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Cinética , Macaca fascicularis , Camundongos , Camundongos Knockout , Modelos Biológicos , Ratos , Receptores Fc/metabolismo , Bibliotecas de Moléculas Pequenas/farmacocinética
19.
Clin Pharmacokinet ; 56(11): 1303-1330, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28401479

RESUMO

BACKGROUND: In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. OBJECTIVES: The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. METHODS: A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. RESULTS: The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. CONCLUSION: The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.


Assuntos
Bases de Dados Factuais , Saúde , Modelos Biológicos , Farmacocinética , Gestantes , Feminino , Humanos , Gravidez
20.
Front Pharmacol ; 8: 67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28382001

RESUMO

Introduction: Tamoxifen is one of the most common treatment opportunities for hormonal positive breast cancer. Despite its good tolerability, patients demonstrate decreasing adherence over years impacting on therapeutic success. PBPK modeling was applied to demonstrate the impact of drug holidays on plasma levels of tamoxifen and its active metabolite endoxifen for different CYP2D6 genotypes. Materials and Methods: A virtual study with 24,000 patients was conducted in order to investigate the development of tamoxifen steady-state kinetics in patient groups of different CYP2D6 genotypes. The impact of drug holidays on steady-state kinetics was investigated assuming changing drug holiday scenarios. Results: Drug holidays in CYP2D6 extensive and intermediate metabolizers (EMs, IMs) exceeding 1 month lead to a decrease of endoxifen steady-state trough levels below the 5th percentile of the control group. Assuming drug holidays of 1, 2, or 3 months and administering a fixed-dose combination of 20 mg tamoxifen and 3 mg endoxifen EMs demonstrated re-established endoxifen steady-state trough levels after 5, 8, and 9 days. IMs receiving the same fixed-dose combination demonstrated re-established endoxifen steady-state trough levels after 7, 10, and 11 days. Discussion: The PBPK model impressively demonstrates the impact of drug holidays in different CYP2D6 genotypes on PK. Population simulation results indicate that drug holidays of more than 2 weeks cause a tremendous decrease of plasma levels despite the long half-life of tamoxifen. To improve therapeutic success, PBPK modeling allows identifying genotype-specific differences in PK following drug holidays and adequate treatment with loading doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA