Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
UCL Open Environ ; 4: e036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37228454


Terrestrial, marine and freshwater realms are inherently linked through ecological, biogeochemical and/or physical processes. An understanding of these connections is critical to optimise management strategies and ensure the ongoing resilience of ecosystems. Artificial light at night (ALAN) is a global stressor that can profoundly affect a wide range of organisms and habitats and impact multiple realms. Despite this, current management practices for light pollution rarely consider connectivity between realms. Here we discuss the ways in which ALAN can have cross-realm impacts and provide case studies for each example discussed. We identified three main ways in which ALAN can affect two or more realms: 1) impacts on species that have life cycles and/or stages in two or more realms, such as diadromous fish that cross realms during ontogenetic migrations and many terrestrial insects that have juvenile phases of the life cycle in aquatic realms; 2) impacts on species interactions that occur across realm boundaries, and 3) impacts on transition zones or ecosystems such as mangroves and estuaries. We then propose a framework for cross-realm management of light pollution and discuss current challenges and potential solutions to increase the uptake of a cross-realm approach for ALAN management. We argue that the strengthening and formalisation of professional networks that involve academics, lighting practitioners, environmental managers and regulators that work in multiple realms is essential to provide an integrated approach to light pollution. Networks that have a strong multi-realm and multi-disciplinary focus are important as they enable a holistic understanding of issues related to ALAN.

PeerJ ; 6: e5599, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30324009


The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.