Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Mais filtros

Base de dados
Tipo de estudo
Intervalo de ano de publicação
Ecology ; 99(8): 1783-1791, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29729193


Forests make up a large portion of terrestrial plant biomass, and the long-lived woody plants that dominate them possess an array of traits that deter consumption by forest pests. Although often extremely effective against native consumers, invasive species that avoid or overcome these defenses can wreak havoc on trees and surrounding ecosystems. This is especially true when multiple invasive species co-occur, since interactions between invasive herbivores may yield non-additive effects on the host. While the threat posed by invasive forest pests is well known, long-term field experiments are necessary to explore these consumer-host interactions at appropriate spatial and temporal scales. Moreover, it is important to measure multiple variables to get a "whole-plant" picture of their combined impact. We report the results of a 4-yr field experiment addressing the individual and combined impacts of two invasive herbivores, the hemlock woolly adelgid (Adelges tsugae) and elongate hemlock scale (Fiorinia externa), on native eastern hemlock (Tsuga canadensis) in southern New England. In 2011, we planted 200 hemlock saplings into a temperate forest understory and experimentally manipulated the presence/absence of both herbivore species; in 2015, we harvested the 88 remaining saplings and assessed plant physiology, growth, and resource allocation. Adelgids strongly affected hemlock growth: infested saplings had lower above/belowground biomass ratios, more needle loss, and produced fewer new needles than control saplings. Hemlock scale did not alter plant biomass allocation or growth, and its co-occurrence did not alter the impact of adelgid. While both adelgid and scale impacted the concentrations of primary metabolites, adelgid effects were more pronounced. Adelgid feeding simultaneously increased free amino acids local to feeding sites and a ~30% reduction in starch. The cumulative impact of adelgid-induced needle loss, manipulation of nitrogen pools, and the loss of stored resources likely accelerates host decline through disruption of homeostatic source-sink dynamics occurring at the whole-plant level. Our research stresses the importance of considering long-term impacts to predict how plants will cope with contemporary pressures experienced in disturbed forests.

Hemípteros , Herbivoria , Animais , Ecossistema , Florestas , New England , Árvores , Tsuga
Angew Chem Int Ed Engl ; 56(51): 16318-16322, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29111609


The coupling of ortho- and para-phenols with secondary and tertiary boronic esters has been explored. In the case of para-substituted phenols, after reaction of a dilithio phenolate species with a boronic ester, treatment with Ph3 BiF2 or Martin's sulfurane gave the coupled product with complete enantiospecificity. The methodology was applied to the synthesis of the broad spectrum antibacterial natural product (-)-4-(1,5-dimethylhex-4-enyl)-2-methyl phenol. For ortho-substituted phenols, initial incorporation of a benzotriazole on the phenol oxygen atom was required. Subsequent ortho-lithiation and borylation gave the coupled product, again with complete stereospecificity.

Angew Chem Int Ed Engl ; 56(39): 11700-11733, 2017 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-28525685


Non-racemic chiral boronic esters are recognised as immensely valuable building blocks in modern organic synthesis. Their stereospecific transformation into a variety of functional groups-from amines and halides to arenes and alkynes-along with their air and moisture stability, has established them as an important target for asymmetric synthesis. Efforts towards the stereoselective synthesis of secondary and tertiary alkyl boronic esters have spanned over five decades and are underpinned by a wealth of reactivity platforms, drawing on the unique and varied reactivity of boron. This Review summarizes strategies for the asymmetric synthesis of alkyl boronic esters, from the seminal hydroboration methods of H. C. Brown to the current state of the art.

Insects ; 7(3)2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27649247


Eastern hemlock (Tsuga canadensis [L.] Carriére) in the United States is threatened by the invasive hemlock woolly adelgid (Adelges tsugae Annand). The native hemlock looper (Lambdina fiscellaria Guenée) also appears to have played a role in previous population declines of this conifer. Although these two insects co-occur in much of the adelgid's invaded range, their interactions remain unstudied. We assessed looper performance and preference on both uninfested and adelgid-infested foliage from adelgid-susceptible hemlocks, as well as on uninfested foliage from an eastern hemlock that is naturally adelgid-resistant. Larvae reared on uninfested foliage from adelgid-susceptible hemlocks experienced 60% mortality within the first two weeks of the experiment, and pupated at a lower weight than larvae fed adelgid-infested foliage. Despite differences in foliage source, this first look and strong pattern suggests that the hemlock looper performs better (pupates earlier, weighs more) on adelgid-infested foliage. In addition, trends suggested that larvae reared on foliage from the adelgid-resistant tree survived better, pupated earlier, and weighed more than in the other treatments. Larvae preferred adelgid-resistant over adelgid-susceptible foliage. Our results suggest that looper perform slightly better on adelgid-infested foliage and that plant resistance to xylem-feeding adelgid may increase susceptibility to foliar-feeding looper larvae.

Chem Asian J ; 9(4): 984-95, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24677815


In recent years there has been an accelerated rate of development in the field of organocatalysis, with asymmetric organocatalysis now reaching full maturity. The invention of new organocatalytic reactions and the exploration of new concepts now appear in tandem with the application of organocatalytic techniques in the synthesis of natural products and active pharmaceutical ingredients (APIs). After a "golden rush" in organocatalysis, researchers are now starting to combine different methods, thereby taking advantage of the significant benefits of synergy. Metals are used in combination with organocatalytic processes, thus reaching complexity that is found in nature, where enzymes take advantage of the presence of certain metals to increase the arsenal of organic transformations available. In this Focus review, we illustrate the possibility of a "happy marriage" between Lewis acids and organocatalytic stereoselective processes. Questions have been raised about the combination of Lewis acids and organocatalysis owing to the presence of water and/or strong bases in these processes. Some Lewis acids have been shown to be compatible with organocatalysis and concepts relating to their use will be illustrated herein. To summarize the fruitful use of Lewis acids in stereoselective organocatalytic processes, we will draw attention to the advantages and selectivity achieved using this method.

Ácidos de Lewis/química , Aminas/química , Catálise , Complexos de Coordenação/química , Reação de Cicloadição , Ouro/química , Cetonas/química , Estereoisomerismo
Ann Neurol ; 52(3): 311-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12205643


Mitochondrial DNA depletion syndrome is a clinically heterogeneous group of disorders characterized by a reduction in mitochondrial DNA copy number. The recent discovery of mutations in the deoxyguanosine kinase (dGK) gene in patients with the hepatocerebral form of mitochondrial DNA depletion syndrome prompted us to screen 21 patients to determine the frequency of dGK mutations, further characterize the clinical spectrum, and correlate genotypes with phenotypes. We detected mutations in three patients (14%). One patient had a homozygous GATT duplication (nucleotides 763-766), and another had a homozygous GT deletion (nucleotides 609-610); both mutations lead to truncated proteins. The third patient was a compound heterozygote for two missense mutations (R142K and E227K) that affect critical residues of the protein. These mutations were associated with variable phenotypes, and their low frequencies suggests that dGK is not the only gene responsible for mitochondrial DNA depletion in liver. The patient with the missense mutations had isolated liver failure and responded well to liver transplantation, which may be a therapeutic option in selected cases.

DNA Mitocondrial/genética , Mutação de Sentido Incorreto , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Sequência de Aminoácidos , Feminino , Dosagem de Genes , Genótipo , Heterozigoto , Homozigoto , Humanos , Lactente , Falência Hepática/genética , Masculino , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/química , Estrutura Terciária de Proteína