Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nanoscale ; 11(39): 18393-18406, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31573583

RESUMO

Iron oxide nanoparticles (IONPs) are frequently used in biomedical applications due to their magnetic properties and putative chemical stability. Nevertheless, their well-known ability to mimic some features of the peroxidase enzyme activity under specific conditions of pH and temperature could lead to the formation of potentially harmful free radical species. In addition to the intrinsic enzyme-like activity of IONPs, the buffer solution is an important external factor that can alter dramatically the IONP activity because the buffer species can interact with the surface of the particles. In our study, IONP activity was evaluated in different buffering solutions under different experimental conditions and predominant free radical species were measured by electron paramagnetic resonance using the spin-trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The formation kinetics of the reactive oxygen species were studied by UV-visible spectroscopy with TMB and DAB peroxidase substrates. We found that the highest catalytic oxidation of peroxidase substrates and free radical generation were achieved in acetate buffer, while phosphate buffer inhibited the peroxidase-like activity of IONPs in a concentration dependent manner. When emulating the physiological conditions, a lower catalytic activity was observed at pH 7.4 when compared to that at pH 5.0. Also, in phosphate buffered saline (PBS), we observed an enhancement in the peroxidase substrate oxidation rate that was not accompanied by an increase in DMPO/adduct formation which could be related to a non-specific oxidation catalyzed by the chloride ion. Similar observations were found after the addition of a bicarbonate to HEPES buffer. TMB oxidation did not occur when the reaction was conducted with free iron ions from metal salts with the same concentration of the IONPs (0.33 Fe2+ and 0.66 Fe3+). However, we observed even higher catalytic activities than those when doubling the IONP concentration when they are combined with the free iron salts. These results indicate that biological buffering solutions need to be carefully considered when evaluating IONP catalytic activity and their potential toxicological effects since under physiological conditions of pH, salinity and buffering species, the peroxidase-like activity of IONPs is dramatically reduced.


Assuntos
Nanopartículas de Magnetita/química , Peroxidase/química , Espécies Reativas de Oxigênio/química , Tampões (Química) , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução
2.
Nanoscale ; 11(7): 3164-3172, 2019 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-30520920

RESUMO

We report a simple and effective way to control the heat generation of a magnetic colloid under alternate magnetic fields by changing the shell composition of bimagnetic core-shell Fe3O4/ZnxCo1-xFe2O4 nanoparticles. The core-shell structure constitutes a magnetically-coupled biphase system, with an effective anisotropy that can be tuned by the substitution of Co2+ by Zn2+ ions in the shell. Magnetic hyperthermia experiments of nanoparticles dispersed in hexane and butter oil showed that the magnetic relaxation is dominated by Brown relaxation mechanism in samples with higher anisotropy (i.e., larger concentration of Co within the shell) yielding high specific power absorption values in low viscosity media as hexane. Increasing the Zn concentration of the shell, diminishes the magnetic anisotropy, which results in a change to a Néel relaxation that dominates the process when the nanoparticles are dispersed in a high-viscosity medium. We demonstrate that tuning the Zn contents at the shell of these exchange-coupled core/shell nanoparticles provides a way to control the magnetic anisotropy without loss of saturation magnetization. This ability is an essential prerequisite for most biomedical applications, where high viscosities and capturing mechanisms are present.

3.
Small ; 14(15): e1703963, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29479814

RESUMO

Although cubic rock salt-CoO has been extensively studied, the magnetic properties of the main nanoscale CoO polymorphs (hexagonal wurtzite and cubic zinc blende structures) are rather poorly understood. Here, a detailed magnetic and neutron diffraction study on zinc blende and wurtzite CoO nanoparticles is presented. The zinc blende-CoO phase is antiferromagnetic with a 3rd type structure in a face-centered cubic lattice and a Néel temperature of TN (zinc-blende) ≈225 K. Wurtzite-CoO also presents an antiferromagnetic order, TN (wurtzite) ≈109 K, although much more complex, with a 2nd type order along the c-axis but an incommensurate order along the y-axis. Importantly, the overall magnetic properties are overwhelmed by the uncompensated spins, which confer the system a ferromagnetic-like behavior even at room temperature.

4.
Nanoscale ; 9(29): 10240-10247, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28696450

RESUMO

In order to explore an alternative strategy to design exchange-biased magnetic nanostructures, bimagnetic core/shell nanoparticles have been fabricated by a thermal decomposition method and systematically studied as a function of the interface exchange coupling. The nanoparticles are constituted by a ∼3 nm antiferromagnetic (AFM) CoO core encapsulated in a ∼4 nm-thick Co1-xZnxFe2O4 (x = 0-1) ferrimagnetic (FiM) shell. The system presents an enhancement of the coercivity (HC) as compared to its FiM single-phase counterpart and exchange bias fields (HEB). While HC decreases monotonically with the Zn concentration from ∼21.5 kOe for x = 0, to ∼7.1 kOe for x = 1, HEB exhibits a non-monotonous behavior being maximum, HEB ∼ 1.4 kOe, for intermediate concentrations. We found that the relationship between the AFM anisotropy energy and the exchange coupling energy can be tuned by replacing Co2+ with Zn2+ ions in the shell. As a consequence, the magnetization reversal mechanism of the system is changed from an AFM/FiM rigid-coupling regime to an exchange-biased regime, providing a new approach to tune the magnetic properties and to design novel hybrid nanostructures.

5.
J Am Acad Orthop Surg Glob Res Rev ; 1(7): e039, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30211363

RESUMO

Loeys-Dietz syndrome (LDS) is an autosomal dominant disorder affecting the connective tissue, resulting in laxity, and can be challenging if surgical treatment is needed. Literature concerning scoliosis and its treatment in LDS is limited. This is a report of scoliosis surgery in a 12-year-old girl with LDS. She underwent anterior instrumented spinal fusion of the segments T12 to L3 because of a left-sided thoracolumbar scoliosis of 42° with dysplastic pedicles. The scoliosis was reduced by 40%, from 42° to 25°, resulting in a satisfactory clinical outcome with a minimal amount of surgical invasion and lack of complications. A minimal approach and anterior instrumented spinal fusion surgery can be considered a valuable surgical treatment alternative for scoliosis in patients with LDS, avoiding the placement of pedicle screws in dysplastic pedicles and using the abnormal laxity of the connective tissue as an advantage.

6.
Nanoscale ; 7(7): 3002-15, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25600147

RESUMO

The intimate relationship between stoichiometry and physicochemical properties in transition-metal oxides makes them appealing as tunable materials. These features become exacerbated when dealing with nanostructures. However, due to the complexity of nanoscale materials, establishing a distinct relationship between structure-morphology and functionalities is often complicated. In this regard, in the FexO/Fe3O4 system a largely unexplained broad dispersion of magnetic properties has been observed. Here we show, thanks to a comprehensive multi-technique approach, a clear correlation between the magneto-structural properties in large (45 nm) and small (9 nm) FexO/Fe3O4 core/shell nanoparticles that can explain the spread of magnetic behaviors. The results reveal that while the FexO core in the large nanoparticles is antiferromagnetic and has bulk-like stoichiometry and unit-cell parameters, the FexO core in the small particles is highly non-stoichiometric and strained, displaying no significant antiferromagnetism. These results highlight the importance of ample characterization to fully understand the properties of nanostructured metal oxides.

7.
J Phys Condens Matter ; 27(1): 016003, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25428138

RESUMO

In this work, we present a study of the low temperature magnetic phases of polycrystalline MnCr2O4 spinel through dc magnetization and ferromagnetic resonance spectroscopy (FMR). Through these experiments, we determined the main characteristic temperatures: T(C) ∼ 41 K and T(H) ∼ 18 K corresponding, respectively, to the ferrimagnetic order and to the low temperature helicoidal transitions. The temperature evolution of the system is described by a phenomenological approach that considers the different terms that contribute to the free energy density. Below the Curie temperature, the FMR spectra were modeled by a cubic magnetocrystalline anisotropy to the second order, with K1 and K2 anisotropy constants that define the easy magnetization axis along the <1 1 0> direction. At lower temperatures, the formation of a helicoidal phase was considered by including uniaxial anisotropy axis along the [11¯0] propagation direction of the spiral arrange, with a Ku anisotropy constant. The values obtained from the fittings at 5 K are K1 = -2.3 × 10(4) erg cm(-3), K2 = 6.4 × 10(4) erg cm(-3) and Ku = 7.5 × 10(4) erg cm(-3).

8.
Nanotechnology ; 25(35): 355704, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25120018

RESUMO

The control of the size of bimagnetic nanoparticles represents an important step toward the study of fundamental properties and the design of new nanostructured magnetic materials. We report the synthesis and the structural and magnetic characterization of bimagnetic CoO/CoFe2O4 core/shell nanoparticles. The material was fabricated by a seed-mediated growth high-temperature decomposition method with sizes in the range of 5-11 nm. We show that the core/shell morphology favours the crystallinity of the shell phase, and the reduction of the particle size leads to a remarkable increase of the magnetic hardening. When the size is reduced, the coercive field at 5 K increases from 21.5 kOe to 30.8 kOe, while the blocking temperature decreases from 388 K to 167 K. The size effects on the magnetic behaviour are described through a phenomenological model for strongly ferri-/antiferromagnetic coupled phases.

9.
Inorg Chem ; 53(5): 2535-44, 2014 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-24528370

RESUMO

We report single-crystal X-band EPR and magnetic measurements of the coordination polymer catena-(trans-(µ2-fumarato)tetraaquacobalt(II)), 1, and the Co(II)-doped Zn(II) analogue, 2, in different Zn:Co ratios. 1 presents two magnetically inequivalent high spin S = 3/2 Co(II) ions per unit cell, named A and B, in a distorted octahedral environment coordinated to four water oxygen atoms and trans coordinated to two carboxylic oxygen atoms from the fumarate anions, in which the Co(II) ions are linked by hydrogen bonds and fumarate molecules. Magnetic susceptibility and magnetization measurements of 1 indicate weak antiferromagnetic exchange interactions between the S = 3/2 spins of the Co(II) ions in the crystal lattice. Oriented single crystal EPR experiments of 1 and 2 were used to evaluate the molecular g-tensor and the different exchange coupling constants between the Co(II) ions, assuming an effective spin S'= 1/2. Unexpectedly, the eigenvectors of the molecular g-tensor were not lying along any preferential bond direction, indicating that, in high spin Co(II) ions in roughly octahedral geometry with approximately axial EPR signals, the presence of molecular pseudo axes in the metal site does not determine preferential directions for the molecular g-tensor. The EPR experiment and magnetic measurements, together with a theoretical analysis relating the coupling constants obtained from both techniques, allowed us to evaluate selectively the exchange coupling constant associated with hydrogen bonds that connect magnetically inequivalent Co(II) ions (|JAB(1/2)| = 0.055(2) cm(­1)) and the exchange coupling constant associated with a fumarate bridge connecting equivalent Co(II) ions (|JAA(1/2)| ≈ 0.25 (1) cm(­1)), in good agreement with the average J(3/2) value determined from magnetic measurements.


Assuntos
Cobalto/química , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Fenômenos Magnéticos , Cristalografia por Raios X , Íons , Modelos Moleculares
10.
ACS Nano ; 7(2): 921-31, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23320459

RESUMO

Here it is demonstrated that multiple-energy, anomalous small-angle X-ray scattering (ASAXS) provides significant enhancement in sensitivity to internal material boundaries of layered nanoparticles compared with the traditional modeling of a single scattering energy, even for cases in which high scattering contrast naturally exists. Specifically, the material-specific structure of monodispersed Fe3O4|γ-Mn2O3 core|shell nanoparticles is determined, and the contribution of each component to the total scattering profile is identified with unprecedented clarity. We show that Fe3O4|γ-Mn2O3 core|shell nanoparticles with a diameter of 8.2 ± 0.2 nm consist of a core with a composition near Fe3O4 surrounded by a (Mn(x)Fe(1-x))3O4 shell with a graded composition, ranging from x ≈ 0.40 at the inner shell toward x ≈ 0.46 at the surface. Evaluation of the scattering contribution arising from the interference between material-specific layers additionally reveals the presence of Fe3O4 cores without a coating shell. Finally, it is found that the material-specific scattering profile shapes and chemical compositions extracted by this method are independent of the original input chemical compositions used in the analysis, revealing multiple-energy ASAXS as a powerful tool for determining internal nanostructured morphology even if the exact composition of the individual layers is not known a priori.

11.
J Am Chem Soc ; 132(27): 9398-407, 2010 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-20568759

RESUMO

The magnetic properties of bimagnetic core/shell nanoparticles consisting of an antiferromagnetic MnO core and a ferrimagnetic passivation shell have been investigated. It is found that the phase of the passivation shell (gamma-Mn(2)O(3) or Mn(3)O(4)) depends on the size of the nanoparticles. Structural and magnetic characterizations concur that while the smallest nanoparticles have a predominantly gamma-Mn(2)O(3) shell, larger ones have increasing amounts of Mn(3)O(4). A considerable enhancement of the Néel temperature, T(N), and the magnetic anisotropy of the MnO core for decreasing core sizes has been observed. The size reduction also leads to other phenomena such as persistent magnetic moment in MnO up to high temperatures and an unusual temperature behavior of the magnetic domains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA