*Phys Rev Lett ; 121(24): 242501, 2018 Dec 14.*

**| MEDLINE**| ID: mdl-30608744

##### RESUMO

The isospin character of p-n pairs at large relative momentum has been observed for the first time in the ^{16}O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in the neutron pickup domain of ^{16}O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ^{16}O.

*Phys Rev Lett ; 110(20): 202501, 2013 May 17.*

**| MEDLINE**| ID: mdl-25167400

##### RESUMO

The first measurement of the three-body photodisintegration of longitudinally polarized (3)He with a circularly polarized Î³-ray beam was carried out at the High Intensity Î³-ray Source facility located at Triangle Universities Nuclear Laboratory. The spin-dependent double-differential cross sections and the contributions from the three-body photodisintegration to the (3)He Gerasimov-Drell-Hearn integrand are presented and compared with state-of-the-art three-body calculations at the incident photon energies of 12.8 and 14.7 MeV. The data reveal the importance of including the Coulomb interaction between protons in three-body calculations.

*Phys Rev Lett ; 103(15): 152501, 2009 Oct 09.*

**| MEDLINE**| ID: mdl-19905628

##### RESUMO

Cross sections for the 3He(e,e' pn)1H reaction were measured for the first time at energy transfers of 220 and 270 MeV for several momentum transfers ranging from 300 to 450 MeV/c. Cross sections are presented as a function of the momentum of the recoil proton and the momentum transfer. Continuum Faddeev calculations using the Argonne V18 and Bonn-B nucleon-nucleon potentials overestimate the measured cross sections by a factor 5 at low recoil proton momentum with the discrepancy becoming smaller at higher recoil proton momentum.

*Phys Rev Lett ; 95(16): 162301, 2005 Oct 14.*

**| MEDLINE**| ID: mdl-16241788

##### RESUMO

Three precise measurements for elastic pd scattering at 135 MeV/A have been performed with the three different experimental setups. The cross sections are described well by the theoretical predictions based on modern nucleon-nucleon forces combined with three-nucleon forces. Relativistic Faddeev calculations show that relativistic effects are restricted to backward angles. This result supports the two measurements recently reported by RIKEN and contradicts the KVI data.

*Phys Rev Lett ; 93(13): 132301, 2004 Sep 24.*

**| MEDLINE**| ID: mdl-15524710

##### RESUMO

New, high-precision measurements of the 3He(e,e(')p) reaction using the A1 Collaboration spectrometers at the Mainz microtron MAMI are presented. These were performed in antiparallel kinematics at energy transfers below the quasielastic peak, and at a central momentum transfer of 685 MeV/c. Cross sections and distorted momentum distributions were extracted and compared to theoretical predictions and existing data. The longitudinal and transverse behavior of the cross section was also studied. Sizable differences in the cross-section behavior from theoretical predictions based on the plane wave impulse approximation were observed in both the two- and three-body breakup channels. Full Faddeev-type calculations account for some of the observed excess cross-section, but significant differences remain.

*Phys Rev Lett ; 86(21): 4787-90, 2001 May 21.*

**| MEDLINE**| ID: mdl-11384348

##### RESUMO

Recently developed chiral nucleon-nucleon (NN) forces at next-to-leading order (NLO), that describe NN phase shifts up to about 100 MeV fairly well, have been applied to 3N and 4N systems. Faddeev-Yakubovsky equations have been solved rigorously. The resulting 3N and 4N binding energies are in the same range as found using standard NN potentials. In addition, low-energy 3N scattering observables are very well reproduced as for standard NN forces. The long-standing A(y) puzzle is absent at NLO. The cutoff dependence of the scattering observables is rather weak.

*Phys Rev Lett ; 86(26 Pt 1): 5862-5, 2001 Jun 25.*

**| MEDLINE**| ID: mdl-11415380

##### RESUMO

A series of measurements have been performed at KVI to obtain the vector analyzing power A(y) of the (2)H(p-->,pd) reaction as a function of incident beam energy at energies of 120, 135, 150, and 170 MeV. For all these measurements, a range of theta(c.m.) from 30 degrees to 170 degrees has been covered. The purpose of these investigations is to observe possible spin-dependent effects beyond two-nucleon forces. When compared to the predictions of Faddeev calculations, based on two-nucleon forces only, significant deviations are observed at all energies and at center-of-mass angles between 70 degrees and 130 degrees. The addition of present-day three-nucleon forces does not improve the description of the data, demonstrating the still insufficient understanding of the properties of three-nucleon systems.

*Phys Rev Lett ; 86(6): 967-70, 2001 Feb 05.*

**| MEDLINE**| ID: mdl-11177986

##### RESUMO

Developments in spin-polarized internal targets for storage rings have permitted measurements of 197 MeV polarized protons scattering from vector polarized deuterons. This work presents measurements of the polarization observables A(y), iT11, and C(y,y) in proton-deuteron elastic scattering. When compared to calculations with and without three-nucleon forces, the measurements provide further evidence that three-nucleon forces make a contribution to the observables. This work indicates that three-body forces derived from static nuclear properties appear to be crucial to the description of dynamical properties.

*Phys Rev Lett ; 84(4): 606-9, 2000 Jan 24.*

**| MEDLINE**| ID: mdl-11017327

##### RESUMO

New vector analyzing-power data on p-->+d elastic scattering at E(p) = 150 and 190 MeV have been measured. These are presented together with existing data and with recent d-->+p vector and tensor analyzing power data at E(d) = 270 MeV. The strong negative extremum of both vector analyzing powers A(p)(y) and A(d)(y) at straight theta(c.m.) approximately 80 degrees -120 degrees is underestimated by Faddeev calculations using modern NN forces. Inclusion of the Tucson-Melbourne 3N force shifts the minima upwards, but with conflicting results for A(p)(y), and leading to a good description for A(d)(y). An A(p)(y) puzzle, previously thought to exist at energies E(N)

*Phys Rev Lett ; 84(23): 5288-91, 2000 Jun 05.*

**| MEDLINE**| ID: mdl-10990925

##### RESUMO

The cross section, the deuteron vector A(d)(y) and tensor analyzing powers A(ij), the polarization transfer coefficients K(y('))(ij), and the induced polarization P(y(')) were measured for the dp elastic scattering at 270 MeV. The cross section and A(d)(y) are well reproduced by Faddeev calculations with modern data-equivalent nucleon-nucleon forces plus the Tucson-Melbourne three-nucleon force. In contrast, A(ij), K(y('))(ij), or P(y(')) are not described by such calculations. These facts indicate the deficiencies in the spin dependence of the Tucson-Melbourne force and call for extended three-nucleon force models.

*Phys Rev Lett ; 85(6): 1190-3, 2000 Aug 07.*

**| MEDLINE**| ID: mdl-10991509

##### RESUMO

The n-n final-state interaction (FSI) was investigated via the 2H(n, np)n reaction at 25 MeV, using a geometry which enables the simultaneous observation of n-p quasifree (QFS) scattering. The data were analyzed with Monte Carlo simulations based on rigorous Faddeev calculations with realistic nucleon-nucleon potentials. The value of a(nn) deduced from the absolute yield in the FSI peak is -16.27+/-0. 40 fm while the relative data, normalized in the QFS region, give -16.06+/-0.35 fm. Thus our results differ from the "recommended" value of a(nn) = -18.5+/-0.3 fm by more than 5 standard deviations.