Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Inherit Metab Dis ; 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34494285

RESUMO

Deficiency of the transacylase tafazzin due to loss of function variants in the X-chromosomal TAFAZZIN gene causes Barth syndrome (BTHS) with severe neonatal or infantile cardiomyopathy, neutropenia, myopathy, and short stature. The condition is characterized by drastic changes in the composition of cardiolipins, a mitochondria-specific class of phospholipids. Studies examining the impact of tafazzin deficiency on the metabolism of other phospholipids have so far generated inhomogeneous and partly conflicting results. Recent studies showed that the cardiolipin composition in cells and different murine tissues is highly dependent on the surrounding lipid environment. In order to study the relevance of different lipid states and tafazzin function for cardiolipin and phospholipid homeostasis we conducted systematic modulation experiments in a CRISPR/Cas9 knock-out model for BTHS. We found that-irrespective of tafazzin function-the composition of cardiolipins strongly depends on the nutritionally available lipid pool. Tafazzin deficiency causes a consistent shift towards cardiolipin species with more saturated and shorter acyl chains. Interestingly, the typical biochemical BTHS phenotype in phospholipid profiles of HEK 293T TAZ knock-out cells strongly depends on the cellular lipid context. In response to altered nutritional lipid compositions, we measured more pronounced changes on phospholipids that were largely masked under standard cell culturing conditions, therewith giving a possible explanation for the conflicting results reported so far on BTHS lipid phenotypes.

2.
J Lipid Res ; 62: 100111, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34450173

RESUMO

The molecular assembly of cells depends not only on the balance between anabolism and catabolism but to a large degree on the building blocks available in the environment. For cultured mammalian cells, this is largely determined by the composition of the applied growth medium. Here, we study the impact of lipids in the medium on mitochondrial membrane architecture and function by combining LC-MS/MS lipidomics and functional tests with lipid supplementation experiments in an otherwise serum-free and lipid-free cell culture model. We demonstrate that the composition of mitochondrial cardiolipins strongly depends on the lipid environment in cultured cells and favors the incorporation of essential linoleic acid over other fatty acids. Simultaneously, the mitochondrial respiratory complex I activity was altered, whereas the matrix-localized enzyme citrate synthase was unaffected. This raises the question on a link between membrane composition and respiratory control. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium. This underlines the importance of considering these factors when using and establishing cell culture models in biomedical research. In summary, we found a strong dependency of central mitochondrial features on the type of lipids contained in the growth medium.

3.
Cell Syst ; 12(8): 780-794.e7, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34139154

RESUMO

COVID-19 is highly variable in its clinical presentation, ranging from asymptomatic infection to severe organ damage and death. We characterized the time-dependent progression of the disease in 139 COVID-19 inpatients by measuring 86 accredited diagnostic parameters, such as blood cell counts and enzyme activities, as well as untargeted plasma proteomes at 687 sampling points. We report an initial spike in a systemic inflammatory response, which is gradually alleviated and followed by a protein signature indicative of tissue repair, metabolic reconstitution, and immunomodulation. We identify prognostic marker signatures for devising risk-adapted treatment strategies and use machine learning to classify therapeutic needs. We show that the machine learning models based on the proteome are transferable to an independent cohort. Our study presents a map linking routinely used clinical diagnostic parameters to plasma proteomes and their dynamics in an infectious disease.


Assuntos
Biomarcadores/análise , COVID-19/patologia , Progressão da Doença , Proteoma/fisiologia , Fatores Etários , Contagem de Células Sanguíneas , Gasometria , Ativação Enzimática , Humanos , Inflamação/patologia , Aprendizado de Máquina , Prognóstico , Proteômica , SARS-CoV-2/imunologia
4.
Anal Chem ; 92(16): 11268-11276, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32692545

RESUMO

Deficient ether lipid biosynthesis in rhizomelic chondrodysplasia punctata and other disorders is associated with a wide range of severe symptoms including small stature with proximal shortening of the limbs, contractures, facial dysmorphism, congenital cataracts, ichthyosis, spasticity, microcephaly, and mental disability. Mouse models are available but show less severe symptoms. In both humans and mice, it has remained elusive which of the symptoms can be attributed to lack of plasmanyl or plasmenyl ether lipids. The latter compounds, better known as plasmalogens, harbor a vinyl ether double bond conferring special chemical and physical properties. Discrimination between plasmanyl and plasmenyl ether lipids is a major analytical challenge, especially in complex lipid extracts with many isobaric species. Consequently, these lipids are often neglected also in recent lipidomic studies. Here, we present a comprehensive LC-MS/MS based approach that allows unequivocal distinction of these two lipid subclasses based on their chromatographic properties. The method was validated using a novel plasmalogen-deficient mouse model, which lacks plasmanylethanolamine desaturase and therefore cannot form plasmenyl ether lipids. We demonstrate that plasmanylethanolamine desaturase deficiency causes an accumulation of plasmanyl species, a too little studied but biologically important substance class.


Assuntos
Éteres/análise , Lipidômica/métodos , Plasmalogênios/análise , Animais , Cromatografia Líquida , Éteres/química , Feminino , Masculino , Camundongos Knockout , Estrutura Molecular , Oxirredutases/genética , Plasmalogênios/química , Espectrometria de Massas em Tandem
5.
Cell Rep ; 30(12): 4281-4291.e4, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209484

RESUMO

Cardiolipin (CL) is a phospholipid specific for mitochondrial membranes and crucial for many core tasks of this organelle. Its acyl chain configurations are tissue specific, functionally important, and generated via post-biosynthetic remodeling. However, this process lacks the necessary specificity to explain CL diversity, which is especially evident for highly specific CL compositions in mammalian tissues. To investigate the so far elusive regulatory origin of CL homeostasis in mice, we combine lipidomics, integrative transcriptomics, and data-driven machine learning. We demonstrate that not transcriptional regulation, but cellular phospholipid compositions are closely linked to the tissue specificity of CL patterns allowing artificial neural networks to precisely predict cross-tissue CL compositions in a consistent mechanistic specificity rationale. This is especially relevant for the interpretation of disease-related perturbations of CL homeostasis, by allowing differentiation between specific aberrations in CL metabolism and changes caused by global alterations in cellular (phospho-)lipid metabolism.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Especificidade de Órgãos , Fosfolipídeos/metabolismo , Animais , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Redes Neurais de Computação , Transcrição Genética
6.
Methods Mol Biol ; 1782: 31-70, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850993

RESUMO

Protocols for High-Resolution FluoRespirometry of intact cells, permeabilized cells, permeabilized muscle fibers, isolated mitochondria, and tissue homogenates offer sensitive diagnostic tests of integrated mitochondrial function using standard cell culture techniques, small needle biopsies of muscle, and mitochondrial preparation methods. Multiple substrate-uncoupler-inhibitor titration (SUIT) protocols for analysis of oxidative phosphorylation (OXPHOS) improve our understanding of mitochondrial respiratory control and the pathophysiology of mitochondrial diseases. Respiratory states are defined in functional terms to account for the network of metabolic interactions in complex SUIT protocols with stepwise modulation of coupling control and electron transfer pathway states. A regulated degree of intrinsic uncoupling is a hallmark of oxidative phosphorylation, whereas pathological and toxicological dyscoupling is evaluated as a mitochondrial defect. The noncoupled state of maximum respiration is experimentally induced by titration of established uncouplers (CCCP, FCCP, DNP) to collapse the protonmotive force across the mitochondrial inner membrane and measure the electron transfer (ET) capacity (open-circuit operation of respiration). Intrinsic uncoupling and dyscoupling are evaluated as the flux control ratio between non-phosphorylating LEAK respiration (electron flow coupled to proton pumping to compensate for proton leaks) and ET capacity. If OXPHOS capacity (maximally ADP-stimulated O2 flux) is less than ET capacity, the phosphorylation pathway contributes to flux control. Physiological substrate combinations supporting the NADH and succinate pathway are required to reconstitute tricarboxylic acid cycle function. This supports maximum ET and OXPHOS capacities, due to the additive effect of multiple electron supply pathways converging at the Q-junction. ET pathways with electron entry separately through NADH (pyruvate and malate or glutamate and malate) or succinate (succinate and rotenone) restrict ET capacity and artificially enhance flux control upstream of the Q-cycle, providing diagnostic information on specific ET-pathway branches. O2 concentration is maintained above air saturation in protocols with permeabilized muscle fibers to avoid experimental O2 limitation of respiration. Standardized two-point calibration of the polarographic oxygen sensor (static sensor calibration), calibration of the sensor response time (dynamic sensor calibration), and evaluation of instrumental background O2 flux (systemic flux compensation) provide the unique experimental basis for high accuracy of quantitative results and quality control in High-Resolution FluoRespirometry.


Assuntos
Fluorometria/métodos , Mitocôndrias Musculares/metabolismo , Fosforilação Oxidativa , Polarografia/métodos , Animais , Biópsia , Biópsia por Agulha , Calibragem , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Permeabilidade da Membrana Celular , Respiração Celular , Transporte de Elétrons , Fluorometria/instrumentação , Células HEK293 , Humanos , Camundongos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , Consumo de Oxigênio , Polarografia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...