Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 258
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 11(2): 200173, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33529550

RESUMO

It has become customary in engineering to require a modelling component in research endeavours. In addition, as the code for these models becomes more byzantine in complexity, it is difficult for reviewers and readers to discern their value and understand the underlying code. This opinion piece summarizes the negative experience of the author with the IPRO and OptMAVEn computational protein engineering models as well as problems with the optStoic metabolic pathway model. In our hands, these models often fail to predict reliable ways to engineer proteins and metabolic pathways.

2.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33483419

RESUMO

Toxin-antitoxin (TA) loci were initially identified on conjugative plasmids, and one function of plasmid-encoded TA systems is to stabilize plasmids or increase plasmid competition via postsegregational killing. Here, we discovered that the type II TA system, Pseudoalteromonas rubra plasmid toxin-antitoxin PrpT/PrpA, on a low-copy-number conjugative plasmid, directly controls plasmid replication. Toxin PrpT resembles ParE of plasmid RK2 while antitoxin PrpA (PF03693) shares no similarity with previously characterized antitoxins. Surprisingly, deleting this prpA-prpT operon from the plasmid does not result in plasmid segregational loss, but greatly increases plasmid copy number. Mechanistically, the antitoxin PrpA functions as a negative regulator of plasmid replication, by binding to the iterons in the plasmid origin that inhibits the binding of the replication initiator to the iterons. We also demonstrated that PrpA is produced at a higher level than PrpT to prevent the plasmid from overreplicating, while partial or complete degradation of labile PrpA derepresses plasmid replication. Importantly, the PrpT/PrpA TA system is conserved and is widespread on many conjugative plasmids. Altogether, we discovered a function of a plasmid-encoded TA system that provides new insights into the physiological significance of TA systems.

3.
Trends Microbiol ; 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33342606

RESUMO

Toxin/antitoxin (TA) systems are present in nearly all bacterial and archaeal strains and consist of a toxin that reduces growth and an antitoxin that masks toxin activity. Currently there are six primary classes for TA systems based on the nature of the antitoxin and the way that the antitoxin inactivates the toxin. Here we show that there now are at least three additional and distinct TA systems in which the antitoxin is an enzyme and the cognate toxin is the direct target of the antitoxin: Hha/TomB (antitoxin oxidizes Cys18 of the toxin), TglT/TakA (antitoxin phosphorylates Ser78 of the toxin), and HepT/MntA (antitoxin adds three AMPs to Tyr104 of the toxin). Thus, we suggest the type VII TA system should be used to designate those TA systems in which the enzyme antitoxin chemically modifies the toxin post-translationally to neutralize it. Defining the type VII TA system using this specific criterion will aid researchers in classifying newly discovered TA systems as well as refine the framework for recognizing the diverse biochemical functions in TA systems.

4.
Nucleic Acids Res ; 48(19): 11054-11067, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33045733

RESUMO

The two-gene module HEPN/MNT is predicted to be the most abundant toxin/antitoxin (TA) system in prokaryotes. However, its physiological function and neutralization mechanism remains obscure. Here, we discovered that the MntA antitoxin (MNT-domain protein) acts as an adenylyltransferase and chemically modifies the HepT toxin (HEPN-domain protein) to block its toxicity as an RNase. Biochemical and structural studies revealed that MntA mediates the transfer of three AMPs to a tyrosine residue next to the RNase domain of HepT in Shewanella oneidensis. Furthermore, in vitro enzymatic assays showed that the three AMPs are transferred to HepT by MntA consecutively with ATP serving as the substrate, and this polyadenylylation is crucial for reducing HepT toxicity. Additionally, the GSX10DXD motif, which is conserved among MntA proteins, is the key active motif for polyadenylylating and neutralizing HepT. Thus, HepT/MntA represents a new type of TA system, and the polyadenylylation-dependent TA neutralization mechanism is prevalent in bacteria and archaea.


Assuntos
Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Shewanella/metabolismo , Sistemas Toxina-Antitoxina
5.
Toxins (Basel) ; 12(9)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887507

RESUMO

Although the failure of antibiotic treatment is normally attributed to resistance, tolerance and persistence display a significant role in the lack of response to antibiotics. Due to the fact that several nosocomial pathogens show a high level of tolerance and/or resistance to chlorhexidine, in this study we analyzed the molecular mechanisms associated with chlorhexidine adaptation in two clinical strains of Klebsiella pneumoniae by phenotypic and transcriptomic studies. These two strains belong to ST258-KPC3 (high-risk clone carrying ß-lactamase KPC3) and ST846-OXA48 (low-risk clone carrying ß-lactamase OXA48). Our results showed that the K. pneumoniae ST258-KPC3CA and ST846-OXA48CA strains exhibited a different behavior under chlorhexidine (CHLX) pressure, adapting to this biocide through resistance and tolerance mechanisms, respectively. Furthermore, the appearance of cross-resistance to colistin was observed in the ST846-OXA48CA strain (tolerant to CHLX), using the broth microdilution method. Interestingly, this ST846-OXA48CA isolate contained a plasmid that encodes a novel type II toxin/antitoxin (TA) system, PemI/PemK. We characterized this PemI/PemK TA system by cloning both genes into the IPTG-inducible pCA24N plasmid, and found their role in persistence and biofilm formation. Accordingly, the ST846-OXA48CA strain showed a persistence biphasic curve in the presence of a chlorhexidine-imipenem combination, and these results were confirmed by the enzymatic assay (WST-1).

6.
Front Microbiol ; 11: 1895, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903830

RESUMO

Toxin/antitoxin (TA) systems are present in most prokaryote genomes. Toxins are almost exclusively proteins that reduce metabolism (but do not cause cell death), and antitoxins are either RNA or proteins that counteract the toxin or the RNA that encodes it. Although TA systems clearly stabilize mobile genetic elements, after four decades of research, the physiological roles of chromosomal TA systems are less clear. For example, recent reports have challenged the notion of TA systems as stress-response elements, including a role in creating the dormant state known as persistence. Here, we present evidence that a primary physiological role of chromosomally encoded TA systems is phage inhibition, a role that is also played by some plasmid-based TA systems. This includes results that show some CRISPR-Cas system elements are derived from TA systems and that some CRISPR-Cas systems mimic the host growth inhibition invoked by TA systems to inhibit phage propagation.

7.
Front Microbiol ; 11: 1565, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733426

RESUMO

Given that a subpopulation of most bacterial cells becomes dormant due to stress, and that the resting cells of pathogens can revive and reconstitute infections, it is imperative to find methods to treat dormant cells to eradicate infections. The dormant bacteria that are not spores or cysts are known as persister cells. Remarkably, in contrast to the original report that incorrectly indicated indole increases persistence, a large number of indole-related compounds have been found in the last few years that kill persister cells. Hence, in this review, along with a summary of recent results related to persister cell formation and resuscitation, we focus on the ability of indole and substituted indoles to combat the persister cells of both pathogens and non-pathogens.

8.
Antibiotics (Basel) ; 9(8)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806704

RESUMO

Due to their reduced metabolism, persister cells can survive most antimicrobial treatments, which usually rely on corrupting active biochemical pathways. Therefore, molecules that kill bacterial persisters should function in a metabolism-independent manner. Some anti-persister compounds have been found previously, such as the DNA-crosslinkers mitomycin C and cisplatin, but more effective and lower cost alternatives are needed. Copper alloys have been used since ancient times due to their antimicrobial properties, and they are still used in agriculture to control plant bacterial diseases. By stopping transcription with rifampicin and by treating with ampicillin to remove non-persister cells, we created a population that consists solely of Escherichia coli persister cells. Using this population of persister cells, we demonstrate that cupric compounds kill E. coli persister cells. Hence, copper ions may be used in controlling the spread of important bacterial strains that withstand treatment with conventional antimicrobials by forming persister cells.

9.
Antimicrob Agents Chemother ; 64(10)2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32718971

RESUMO

Antibiotic failure not only is due to the development of resistance by pathogens but can also often be explained by persistence and tolerance. Persistence and tolerance can be included in the "persistent phenotype," with high relevance for clinics. Two of the most important molecular mechanisms involved in tolerance and persistence are toxin-antitoxin (TA) modules and signaling via guanosine pentaphosphate/tetraphosphate [(p)ppGpp], also known as "magic spot." (p)ppGpp is a very important stress alarmone which orchestrates the stringent response in bacteria; hence, (p)ppGpp is produced during amino acid or fatty acid starvation by proteins belonging to the RelA/SpoT homolog family (RSH). However, (p)ppGpp levels can also accumulate in response to a wide range of signals, including oxygen variation, pH downshift, osmotic shock, temperature shift, or even exposure to darkness. Furthermore, the stringent response is not only involved in responses to environmental stresses (starvation for carbon sources, fatty acids, and phosphates or heat shock), but it is also used in bacterial pathogenesis, host invasion, and antibiotic tolerance and persistence. Given the exhaustive and contradictory literature surrounding the role of (p)ppGpp in bacterial persistence, and with the aim of summarizing what is known so far about the magic spot in this bacterial stage, this review provides new insights into the link between the stringent response and persistence. Moreover, we review some of the innovative treatments that have (p)ppGpp as a target, which are in the spotlight of the scientific community as candidates for effective antipersistence agents.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32363793
11.
Adv Biosyst ; 4(3): e1900290, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32293143

RESUMO

Periodically, a scientific field should examine its early premises. For ubiquitous toxin/antitoxin (TA) systems, several initial paradigms require adjustment based on accumulated data. For example, it is now clear that under physiological conditions, there is little evidence that toxins of TA systems cause cell death and little evidence that TA systems cause persistence. Instead, TA systems are utilized to reduce metabolism during stress, inhibit phages, stabilize genetic elements, and influence biofilm formation (bacterial cells attached via an extracellular matrix). In this essay, it is argued that toxins bound to antitoxins are not likely to become activated by preferential antitoxin degradation but instead, de novo toxin synthesis in the absence of stoichiometric amounts of antitoxin activates toxins.

12.
Biochem Biophys Res Commun ; 523(2): 281-286, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32007277

RESUMO

Stress is ubiquitous for bacteria and can convert a subpopulation of cells into a dormant state known as persistence, in which cells are tolerant to antimicrobials. These cells revive rapidly when the stress is removed and are likely the cause of many recurring infections such as those associated with tuberculosis, cystic fibrosis, and Lyme disease. However, how persister cells are formed is not understood well. Here we propose the ppGpp ribosome dimerization persister (PRDP) model in which the alarmone guanosine pentaphosphate/tetraphosphate (henceforth ppGpp) generates persister cells directly by inactivating ribosomes via the ribosome modulation factor (RMF), the hibernation promoting factor (Hpf), and the ribosome-associated inhibitor (RaiA). We demonstrate that persister cells contain a large fraction of 100S ribosomes, that inactivation of RMF, HpF, and RaiA reduces persistence and increases single-cell persister resuscitation and that ppGpp has no effect on single-cell persister resuscitation. Hence, a direct connection between ppGpp and persistence is shown along with evidence of the importance of ribosome dimerization in persistence and for active ribosomes during resuscitation.


Assuntos
Escherichia coli/metabolismo , Guanosina Tetrafosfato/metabolismo , Modelos Biológicos , Ribossomos/metabolismo , Dimerização , Proteínas de Escherichia coli/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Estresse Fisiológico
13.
iScience ; 23(1): 100792, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31926430

RESUMO

Persistence, the stress-tolerant state, is arguably the most vital phenotype since nearly all cells experience nutrient stress, which causes a sub-population to become dormant. However, how persister cells wake to reconstitute infections is not understood well. Here, using single-cell observations, we determined that Escherichia coli persister cells resuscitate primarily when presented with specific carbon sources, rather than spontaneously. In addition, we found that the mechanism of persister cell waking is through sensing nutrients by chemotaxis and phosphotransferase membrane proteins. Furthermore, nutrient transport reduces the level of secondary messenger cAMP through enzyme IIA; this reduction in cAMP levels leads to ribosome resuscitation and rescue. Resuscitating cells also immediately commence chemotaxis toward nutrients, although flagellar motion is not required for waking. Hence, persister cells wake by perceiving nutrients via membrane receptors that relay the signal to ribosomes via the secondary messenger cAMP, and persisters wake and utilize chemotaxis to acquire nutrients.

14.
Environ Microbiol ; 22(3): 850-857, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31608580

RESUMO

Upon a wide range of stress conditions (e.g. nutrient, antibiotic, oxidative), a subpopulation of bacterial cells known as persisters survives by halting metabolism. These cells resuscitate rapidly to reconstitute infections once the stress is removed and nutrients are provided. However, how these dormant cells resuscitate is not understood well but involves reactivating ribosomes. By screening 10,000 compounds directly for stimulating Escherichia coli persister cell resuscitation, we identified that 2-{[2-(4-bromophenyl)-2-oxoethyl]thio}-3-ethyl-5,6,7,8-tetrahydro[1]benzothieno[2,3-d]pyrimidin-4(3H)-one (BPOET) stimulates resuscitation. Critically, by screening 4267 E. coli proteins, we determined that BPOET activates hibernating ribosomes via 23S rRNA pseudouridine synthase RluD, which increases ribosome activity. Corroborating the increased waking with RluD, production of RluD increased the number of active ribosomes in persister cells. Also, inactivating the small RNA RybB which represses rluD led to faster persister resuscitation. Hence, persister cells resuscitate via activation of RluD.

16.
Front Microbiol ; 10: 2322, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649653

RESUMO

Quorum sensing in Pseudomonas aeruginosa controls the production of costly public goods such as exoproteases. This cooperative behavior is susceptible to social cheating by mutants that do not invest in the exoprotease production but assimilate the amino acids and peptides derived by the hydrolysis of proteins in the extracellular media. In sequential cultures with protein as the sole carbon source, these social cheaters are readily selected and often reach equilibrium with the exoprotease producers. Nevertheless, an excess of cheaters causes the collapse of population growth. In this work, using the reference strain PA14 and a clinical isolate from a burn patient, we demonstrate that the initial amount of public goods (exoprotease) that comes with the inoculum in each sequential culture is essential for maintaining population growth and that eliminating the exoprotease in the inoculum leads to rapid population collapse. Therefore, our results suggest that sequential washes should be combined with public good inhibitors to more effectively combat P. aeruginosa infections.

18.
Environ Microbiol ; 21(11): 4212-4232, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418995

RESUMO

Almost all bacterial genomes harbour prophages, yet it remains unknown why prophages integrate into tRNA-related genes. Approximately 1/3 of Shewanella isolates harbour a prophage at the tmRNA (ssrA) gene. Here, we discovered a P2-family prophage integrated at the 3'-end of ssrA in the deep-sea bacterium S. putrefaciens. We found that ~0.1% of host cells are lysed to release P2 constitutively during host growth. P2 phage production is induced by a prophage-encoded Rep protein and its excision is induced by the Cox protein. We also found that P2 genome excision leads to the disruption of wobble base pairing of SsrA due to site-specific recombination, thus disrupting the trans-translation function of SsrA. We further demonstrated that P2 excision greatly hinders growth in seawater medium and inhibits biofilm formation. Complementation with a functional SsrA in the P2-excised strain completely restores the growth defects in seawater medium and partially restores biofilm formation. Additionally, we found that products of the P2 genes also increase biofilm formation. Taken together, this study illustrates a symbiotic relationship between P2 and its marine host, thus providing multiple benefits for both sides when a phage is integrated but suffers from reduced fitness when the prophage is excised.


Assuntos
Bacteriófago P2/fisiologia , Shewanella putrefaciens/virologia , Simbiose/genética , Organismos Aquáticos/genética , Genoma Bacteriano/genética , Prófagos/genética , RNA Bacteriano/genética , Shewanella putrefaciens/genética
19.
Biotechnol Bioeng ; 116(9): 2263-2274, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31161664

RESUMO

The subpopulation of bacterial cells that survive myriad stress conditions (e.g., nutrient deprivation and antimicrobials) by ceasing metabolism, revive by activating ribosomes. These resuscitated cells can reconstitute infections; hence, it is imperative to discover compounds which eradicate persister cells. By screening 10,000 compounds directly for persister cell killing, we identified 5-nitro-3-phenyl-1H-indol-2-yl-methylamine hydrochloride (NPIMA) kills Escherichia coli persister cells more effectively than the best indigoid found to date, 5-iodoindole, and better than the DNA-crosslinker cisplatin. In addition, NPIMA eradicated Pseudomonas aeruginosa persister cells in a manner comparable to cisplatin. NPIMA also eradicated Staphylococcus aureus persister cells but was less effective than cisplatin. Critically, NPIMA kills Gram-positive and Gram-negative bacteria by damaging membranes and causing lysis as demonstrated by microscopy and release of extracellular DNA and protein. Furthermore, NPIMA was effective in reducing P. aeruginosa and S. aureus cell numbers in a wound model, and no resistance was found after 1 week. Hence, we identified a potent indigoid that kills persister cells by damaging their membranes.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/crescimento & desenvolvimento , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Antibacterianos/química , Testes de Sensibilidade Microbiana
20.
Environ Microbiol ; 21(10): 3564-3576, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31087603

RESUMO

Microbiologically influenced corrosion causes $100 billion in damage per year, and biofilms formed by sulfate-reducing bacteria (SRB) are the major culprit. However, little is known about the regulation of SRB biofilm formation. Using Desulfovibrio vulgaris as a model SRB organism, we compared the transcriptomes of biofilm and planktonic cells and identified that the gene for σ54 -dependent regulator DVU2956 is repressed in biofilms. Utilizing a novel promoter that is primarily transcribed in biofilms (Pdvu0304 ), we found production of DVU2956 inhibits biofilm formation by 70%. Corroborating this result, deleting dvu2956 increased biofilm formation, and this biofilm phenotype could be complemented. By producing proteins in biofilms from genes controlled by DVU2956 (dvu2960 and dvu2962), biofilm formation was inhibited almost completely. A second round of RNA-seq for the production of DVU2956 revealed DVU2956 influences electron transport via an Hmc complex (high-molecular-weight cytochrome c encoded by dvu0531-dvu0536) and the Fe-only hydrogenase (encoded by dvu1769, hydA and dvu1770, hydB) to control H2 S production. Corroborating these results, producing DVU2956 in biofilms decreased H2 S production by half, deleting dvu2956 increased H2 S production by 131 ± 5%, and producing DVU2956 in the dvu2956 strain reduced H2 S production. Therefore, DVU2956 maintains SRB in the planktonic state and reduces H2 S formation.


Assuntos
Desulfovibrio vulgaris/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas de Bactérias , Biofilmes/crescimento & desenvolvimento , Desulfovibrio vulgaris/genética , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...