Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Discov Today ; 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34775105

RESUMO

The advantage of metagenomics over the culture-based natural product (NP) discovery pipeline is the ability to access the biosynthetic potential of uncultivable microbes. Advances in DNA sequencing are revolutionizing conventional metagenomics approaches for microbial NP discovery. The genomes of (in)cultivable bugs can be resolved straightforwardly from environmental samples, enabling in situ prediction of biosynthetic gene clusters (BGCs). The predicted chemical diversities could be realized not only by heterologous expression of gene clusters originating from DNA synthesis or direct cloning, but also potentially by bioinformatic-directed organic synthesis or chemoenzymatic total synthesis. In this review, we suggest that metagenomic sequencing in tandem with multidisciplinary approaches will form a versatile platform to shed light on a plethora of microbial 'dark matter'.

3.
ACS Synth Biol ; 10(11): 2904-2909, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34757714

RESUMO

Genome mining has revealed that myxobacteria contain a myriad of cryptic biosynthetic gene clusters (BGCs). Here, we report the characterization of a panel of myxobacterial promoters with variable strength that are applicable in the engineering of BGCs in myxobacteria. The screened strongest constitutive promoter was used to efficiently enhance the expression of two complex BGCs governing the biosynthesis of myxochromide and DKxanthene in the model myxobacterium Myxococcus xanthus DK1622. We also showcased the combination of promoter engineering and MS2-based spectral networking as an effective strategy to shed light on the previously overlooked chemistry in the family of myxochromide-type lipopeptides. The enriched promoter library substantially expanded the synthetic biology toolkit available for myxobacteria.

4.
J Nat Prod ; 84(10): 2744-2748, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34623817

RESUMO

Myxobacteria are a prolific source of structurally diverse natural products, and one of the best-studied myxobacterial products is the siderophore myxochelin. Herein, we report two new compounds, myxochelins N (1) and O (2), that are nicotinic paralogs of myxochelin A, from the terrestrial myxobacterium Archangium sp. SDU34; 2 is functionalized with a rare 2-oxazolidinone. A precursor-feeding experiment implied that the biosynthesis of 1 or 2 was due to altered substrate specificity of the loading module of MxcE, which likely accepts nicotinic acid and benzoic acid instead of more conventional 2,3-dihydroxybenzoic acid. We also employed a phylogenomic approach to map the evolutionary relationships of the myxochelin biosynthetic gene clusters (BGCs) in all the available myxobacterial genomes, to pave the way for the future discovery of potentially hidden myxochelin derivatives. Although the biological function of 1 and 2 is unclear yet, this work underpins that even extensively studied BGCs in myxobacteria can still produce new chemistry.

6.
J Reconstr Microsurg ; 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553344

RESUMO

BACKGROUND: Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are limited to flaps which carry a cutaneous paddle. As such, this useful and reliable technology has not previously been applicable to muscle-only free flaps where other modalities with substantial limitations continue to be utilized. METHODS: We present the first NIRS probe which allows continuous monitoring of local tissue oxygen saturation (StO2) directly within the substance of muscle tissue. This probe is flexible, subcentimeter in scale, waterproof, biocompatible, and is fitted with resorbable barbs which facilitate temporary autostabilization followed by easy atraumatic removal. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. During these experiments, the T.Ox device was affixed to the skin paddle, while the novel probe was within the muscle component of the same flap. RESULTS: The intramuscular NIRS device and skin-mounted ViOptix T.Ox devices produced very similar StO2 tracings throughout the vascular clamping events, with obvious and parallel changes occurring upon vascular clamping and release. The normalized cross-correlation at zero lag describing correspondence between the novel intramuscular NIRS and T.Ox devices was >0.99. CONCLUSION: This novel intramuscular NIRS probe offers continuous monitoring of oxygen saturation within muscle flaps. This experiment demonstrates the potential suitability of this intramuscular NIRS probe for the task of muscle-only free flap monitoring, where NIRS has not previously been applicable. Testing in the clinical environment is necessary to assess durability and reliability.

7.
J Reconstr Microsurg ; 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404105

RESUMO

BACKGROUND: Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are highly sensitive for detecting malperfusion. However, the clinical utility and user experience are limited by the wired connection between the sensor and bedside console. This wire leads to instability of the flap-sensor interface and may cause false alarms. METHODS: We present a novel wearable wireless NIRS sensor for continuous fasciocutaneous free flap monitoring. This waterproof silicone-encapsulated Bluetooth-enabled device contains two light-emitting diodes and two photodetectors in addition to a battery sufficient for 5 days of uninterrupted function. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. RESULTS: Devices were tested in four flaps using three animals. Both devices produced very similar tissue oxygen saturation (StO2) tracings throughout the vascular clamping events, with obvious and parallel changes occurring on arterial clamping, arterial release, venous clamping, and venous release. Small interdevice variations in absolute StO2 value readings and magnitude of change were observed. The normalized cross-correlation at zero lag describing correspondence between the novel NIRS and T.Ox devices was >0.99 in each trial. CONCLUSION: The wireless NIRS flap monitor is capable of detecting StO2 changes resultant from arterial vascular occlusive events. In this porcine flap model, the functionality of this novel sensor closely mirrored that of the T.Ox wired platform. This device is waterproof, highly adhesive, skin conforming, and has sufficient battery life to function for 5 days. Clinical testing is necessary to determine if this wireless functionality translates into fewer false-positive alarms and a better user experience.

8.
Adv Mater ; 33(39): e2103857, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34369002

RESUMO

Wireless, skin-integrated devices for continuous, clinical-quality monitoring of vital signs have the potential to greatly improve the care of patients in neonatal and pediatric intensive-care units. These same technologies can also be used in the home, across a broad spectrum of ages, from beginning to end of life. Although miniaturized forms of such devices minimize patient burden and improve compliance, they represent life-threatening choking hazards for infants. A materials strategy is presented here to address this concern. Specifically, composite materials are introduced as soft encapsulating layers and gentle adhesives that release chemical compounds designed to elicit an intense bitter taste when placed in the mouth. Reflexive reactions to this sensation strongly reduce the potential for ingestion, as a safety feature. The materials systems described involve a non-toxic bitterant (denatonium benzoate) as a dopant in an elastomeric (poly(dimethylsiloxane)) or hydrogel matrix. Experimental and computational studies of these composite materials and the kinetics of release of the bitterant define the key properties. Incorporation into various wireless skin-integrated sensors demonstrates their utility in functional systems. This simple strategy offers valuable protective capabilities, with broad practical relevance to the welfare of children monitored with wearable devices.

9.
Angew Chem Int Ed Engl ; 60(40): 21679-21684, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314077

RESUMO

There is a continuous need for novel microbial natural products to fill the drying-up drug development pipeline. Herein, we report myxadazoles from Myxococcus sp. SDU36, a family of novel chimeric small molecules that consist of N-ribityl 5,6-dimethylbenzimidazole and a linear fatty acid chain endowed with an isoxazole ring. The experiments of genome sequencing, gene insertion mutation, isotope labelling, and precursor feeding demonstrated that the fatty acid chain was encoded by a non-canonical PKS/NRPS gene cluster, whereas the origin of N-ribityl 5,6-dimethylbenzimidazole was related to the vitamin B12 metabolism. The convergence of these two distinct biosynthetic pathways through a C-N coupling led to the unique chemical framework of myxadazoles, which is an unprecedented hybridization mode in the paradigm of natural products. Myxadazoles exhibited potent vasculogenesis promotion effect and moderate antithrombotic activity, underscoring their potential usage for the treatment of cardiovascular diseases.


Assuntos
Benzimidazóis/uso terapêutico , Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Isoxazóis/uso terapêutico , Animais , Benzimidazóis/química , Fármacos Cardiovasculares/química , Isoxazóis/química , Estrutura Molecular , Myxococcus/química , Peixe-Zebra
10.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33980495

RESUMO

Soft, skin-integrated electronic sensors can provide continuous measurements of diverse physiological parameters, with broad relevance to the future of human health care. Motion artifacts can, however, corrupt the recorded signals, particularly those associated with mechanical signatures of cardiopulmonary processes. Design strategies introduced here address this limitation through differential operation of a matched, time-synchronized pair of high-bandwidth accelerometers located on parts of the anatomy that exhibit strong spatial gradients in motion characteristics. When mounted at a location that spans the suprasternal notch and the sternal manubrium, these dual-sensing devices allow measurements of heart rate and sounds, respiratory activities, body temperature, body orientation, and activity level, along with swallowing, coughing, talking, and related processes, without sensitivity to ambient conditions during routine daily activities, vigorous exercises, intense manual labor, and even swimming. Deployments on patients with COVID-19 allow clinical-grade ambulatory monitoring of the key symptoms of the disease even during rehabilitation protocols.


Assuntos
Acelerometria/instrumentação , Acelerometria/métodos , Eletrocardiografia Ambulatorial/instrumentação , Eletrocardiografia Ambulatorial/métodos , Dispositivos Eletrônicos Vestíveis , Temperatura Corporal , COVID-19 , Exercício Físico/fisiologia , Frequência Cardíaca , Humanos , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , SARS-CoV-2
11.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33893178

RESUMO

Capabilities in continuous monitoring of key physiological parameters of disease have never been more important than in the context of the global COVID-19 pandemic. Soft, skin-mounted electronics that incorporate high-bandwidth, miniaturized motion sensors enable digital, wireless measurements of mechanoacoustic (MA) signatures of both core vital signs (heart rate, respiratory rate, and temperature) and underexplored biomarkers (coughing count) with high fidelity and immunity to ambient noises. This paper summarizes an effort that integrates such MA sensors with a cloud data infrastructure and a set of analytics approaches based on digital filtering and convolutional neural networks for monitoring of COVID-19 infections in sick and healthy individuals in the hospital and the home. Unique features are in quantitative measurements of coughing and other vocal events, as indicators of both disease and infectiousness. Systematic imaging studies demonstrate correlations between the time and intensity of coughing, speaking, and laughing and the total droplet production, as an approximate indicator of the probability for disease spread. The sensors, deployed on COVID-19 patients along with healthy controls in both inpatient and home settings, record coughing frequency and intensity continuously, along with a collection of other biometrics. The results indicate a decaying trend of coughing frequency and intensity through the course of disease recovery, but with wide variations across patient populations. The methodology creates opportunities to study patterns in biometrics across individuals and among different demographic groups.


Assuntos
COVID-19/fisiopatologia , Frequência Cardíaca , Taxa Respiratória , Sons Respiratórios , SARS-CoV-2 , Tecnologia sem Fio , Biomarcadores , Humanos , Monitorização Fisiológica
12.
BMC Med Genomics ; 14(1): 82, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731094

RESUMO

BACKGROUND: Cryptic balanced translocations often evade detection by conventional cytogenetics. The preimplantation genetic testing (PGT) technique can be used to help carriers of balanced translocations give birth to healthy offspring; however, for carriers of cryptic balanced translocations, there is only one report about trying assisted reproduction using the PGT technique but with no pregnancy. CASE PRESENTATION: A couple had 3 births out of 4 pregnancies, and all died very young, with two of them having both cerebral palsy and glaucoma. The husband with oligoasthenospermia was found to be a cryptic balanced translocation carrier for t (9,13) (p24.3, q31.3) with G-banding, FISH (fluorescence in-situ hybridization), and MicroSeq techniques; live birth of a healthy baby girl was achieved with PGT/NGS (next-generation sequencing) for the couple. CONCLUSION: Here, we report for the first time a successful live birth of a healthy baby through the PGT technique for a family in which the husband is a carrier of the cryptic balanced translocation t (9,13) (p24.3, q31.3), presumably causative for cerebral palsy and glaucoma. Our study showed that the PGT/NGS technique can effectively help families with a cryptic balanced translocation have healthy offspring.


Assuntos
Paralisia Cerebral , Nascido Vivo , Adulto , Feminino , Testes Genéticos , Humanos , Gravidez , Diagnóstico Pré-Implantação
13.
Org Lett ; 23(6): 2114-2119, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689374

RESUMO

An unprecedented 19-membered allenic macrolide archangiumide (1) was discovered from the myxobacterium Archangium violaceum SDU8 by integrating NMR-based metabolic profiling and genome mining. Its biosynthesis pathway was proposed based on the architectural analysis of the encoding trans-AT PKS genes and validated by isotope labeling. The methodology of combing 2D NMR-based metabolic profiling and bioinformatics-aided structure prediction, as exemplified by this study, is anticipated to improve discovery efficiency of a broader range of microbial "dark matter".


Assuntos
Macrolídeos/química , Myxococcales/química , Antibacterianos/química , Macrolídeos/metabolismo , Estrutura Molecular
14.
Proc Natl Acad Sci U S A ; 117(50): 31674-31684, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257558

RESUMO

The standard of clinical care in many pediatric and neonatal neurocritical care units involves continuous monitoring of cerebral hemodynamics using hard-wired devices that physically adhere to the skin and connect to base stations that commonly mount on an adjacent wall or stand. Risks of iatrogenic skin injuries associated with adhesives that bond such systems to the skin and entanglements of the patients and/or the healthcare professionals with the wires can impede clinical procedures and natural movements that are critical to the care, development, and recovery of pediatric patients. This paper presents a wireless, miniaturized, and mechanically soft, flexible device that supports measurements quantitatively comparable to existing clinical standards. The system features a multiphotodiode array and pair of light-emitting diodes for simultaneous monitoring of systemic and cerebral hemodynamics, with ability to measure cerebral oxygenation, heart rate, peripheral oxygenation, and potentially cerebral pulse pressure and vascular tone, through the utilization of multiwavelength reflectance-mode photoplethysmography and functional near-infrared spectroscopy. Monte Carlo optical simulations define the tissue-probing depths for source-detector distances and operating wavelengths of these systems using magnetic resonance images of the head of a representative pediatric patient to define the relevant geometries. Clinical studies on pediatric subjects with and without congenital central hypoventilation syndrome validate the feasibility for using this system in operating hospitals and define its advantages relative to established technologies. This platform has the potential to substantially enhance the quality of pediatric care across a wide range of conditions and use scenarios, not only in advanced hospital settings but also in clinics of lower- and middle-income countries.


Assuntos
Técnicas Biossensoriais , Circulação Cerebrovascular/fisiologia , Monitorização Hemodinâmica/instrumentação , Transtornos do Neurodesenvolvimento/diagnóstico , Monitorização Neurofisiológica/instrumentação , Adolescente , Criança , Desenvolvimento Infantil/fisiologia , Pré-Escolar , Feminino , Monitorização Hemodinâmica/métodos , Humanos , Lactente , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Monitorização Neurofisiológica/métodos , Espectroscopia de Luz Próxima ao Infravermelho/instrumentação , Dispositivos Eletrônicos Vestíveis , Tecnologia sem Fio/instrumentação
15.
Nat Commun ; 11(1): 5625, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159052

RESUMO

The human metabolome provides a window into the mechanisms and biomarkers of various diseases. However, because of limited availability, many sample types are still difficult to study by metabolomic analyses. Here, we present a mass spectrometry (MS)-based metabolomics strategy that only consumes sub-nanoliter sample volumes. The approach consists of combining a customized metabolomics workflow with a pulsed MS ion generation method, known as triboelectric nanogenerator inductive nanoelectrospray ionization (TENGi nanoESI) MS. Samples tested with this approach include exhaled breath condensate collected from cystic fibrosis patients as well as in vitro-cultured human mesenchymal stromal cells. Both test samples are only available in minimum amounts. Experiments show that picoliter-volume spray pulses suffice to generate high-quality spectral fingerprints, which increase the information density produced per unit sample volume. This TENGi nanoESI strategy has the potential to fill in the gap in metabolomics where liquid chromatography-MS-based analyses cannot be applied. Our method opens up avenues for future investigations into understanding metabolic changes caused by diseases or external stimuli.


Assuntos
Fibrose Cística/sangue , Espectrometria de Massas/métodos , Metabolômica/legislação & jurisprudência , Biomarcadores/sangue , Fibrose Cística/metabolismo , Humanos , Espectrometria de Massas/instrumentação , Células-Tronco Mesenquimais/química , Células-Tronco Mesenquimais/metabolismo , Metabolômica/instrumentação
16.
Appl Microbiol Biotechnol ; 104(21): 9125-9134, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32940736

RESUMO

The macrolactone rapamycin (RAP) presents a broad range of bioactivities, but its clinical applications are compromised due to the poor water solubility and low bioavailability, which could probably be overcome by glycosylation. In this study, we tested a set of promiscuous glycosyltransferases (GTs) to modify rapamycin with four different sugar donors. BsGT-1 displayed the best glycosylation activity with a preference for UDP-glucose, and the glycosylation happened at C-28 or C-40 of rapamycin, producing rapamycin-40-O-ß-D-glucoside (RG1), and two new compounds rapamycin-28-O-ß-D-glucoside (RG2) and rapamycin-28,40-O-ß-D-diglucoside (RG3). The glycosylation remarkably improved water solubility and almost completely abolished cytotoxicity but simultaneously attenuated the antifungal, antitumor, and immunosuppression bioactivities of rapamycin. We found the glycosylation at C-40 had less effect on the bioactivities than that at C-28. The molecular docking analysis revealed that the glycosylation, especially the glycosylation at C-28, weakened the hydrophobic and hydrogen bonding contacts between the rapamycin glucosides and the binding proteins: the FK506-binding protein (FKBP12) and the FKBP12-rapamycin binding (FRB) domain. This study highlights a succinct approach to expand the chemical diversity of the therapeutically important molecule rapamycin by using promiscuous glycosyltransferases. Moreover, the fact that glycosyl moieties at different positions of rapamycin affect bioactivity to different extents inspires further glycosylation engineering to improve properties of rapamycin. KEY POINTS: • Rapamycin was glycosylated efficiently by some promiscuous GTs. • Glycosylation improved water solubility, attenuated cytotoxicity, and bioactivities. • Glycosylation affected the interactions between ligand and binding proteins.


Assuntos
Glicosiltransferases , Sirolimo , Glucosídeos , Glicosilação , Glicosiltransferases/metabolismo , Simulação de Acoplamento Molecular , Sirolimo/farmacologia
17.
ACS Nano ; 14(11): 14665-14674, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32936611

RESUMO

Developing low-cost and biodegradable piezoelectric nanogenerators is of great importance for a variety of applications, from harvesting low-grade mechanical energy to wearable sensors. Many of the most widely used piezoelectric materials, including lead zirconate titanate (PZT), suffer from serious drawbacks such as complicated synthesis, poor mechanical properties (e.g., brittleness), and toxic composition, limiting their development for biomedical applications and posing environmental problems for their disposal. Here, we report a low-cost, biodegradable, biocompatible, and highly compressible piezoelectric nanogenerator based on a wood sponge obtained with a simple delignification process. Thanks to the enhanced compressibility of the wood sponge, our wood nanogenerator (15 × 15 × 14 mm3, longitudinal × radial × tangential) can generate an output voltage of up to 0.69 V, 85 times higher than that generated by native (untreated) wood, and it shows stable performance under repeated cyclic compression (≥600 cycles). Our approach suggests the importance of increased compressibility of bulk materials for improving their piezoelectric output. We demonstrate the versatility of our nanogenerator by showing its application both as a wearable movement monitoring system (made with a single wood sponge) and as a large-scale prototype with increased output (made with 30 wood sponges) able to power simple electronic devices (a LED light, a LCD screen). Moreover, we demonstrate the biodegradability of our wood sponge piezoelectric nanogenerator by studying its decomposition with cellulose-degrading fungi. Our results showcase the potential application of a wood sponge as a sustainable energy source, as a wearable device for monitoring human motions, and its contribution to environmental sustainability by electronic waste reduction.

18.
ACS Chem Biol ; 15(9): 2529-2538, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32840360

RESUMO

Angucyclines are a structurally diverse class of actinobacterial natural products defined by their varied polycyclic ring systems, which display a wide range of biological activities. We recently discovered lugdunomycin (1), a highly rearranged polyketide antibiotic derived from the angucycline backbone that is synthesized via several yet unexplained enzymatic reactions. Here, we show via in vivo, in vitro, and structural analysis that the promiscuous reductase LugOII catalyzes both a C6 and an unprecedented C1 ketoreduction. This then sets the stage for the subsequent C-ring cleavage that is key to the rearranged scaffolds of 1. The 1.1 Å structures of LugOII in complex with either ligand 8-O-Methylrabelomycin (4) or 8-O-Methyltetrangomycin (5) and of apoenzyme were resolved, which revealed a canonical Rossman fold and a remarkable conformational change during substrate capture and release. Mutational analysis uncovered key residues for substrate access, position, and catalysis as well as specific determinants that control its dual functionality. The insights obtained in this work hold promise for the discovery and engineering of other promiscuous reductases that may be harnessed for the generation of novel biocatalysts for chemoenzymatic applications.


Assuntos
Oxirredutases do Álcool/metabolismo , Antibacterianos/metabolismo , Policetídeos/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Domínio Catalítico/genética , Cristalografia por Raios X , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Policetídeos/química , Ligação Proteica , Streptomyces/enzimologia , Especificidade por Substrato
19.
Comput Struct Biotechnol J ; 18: 1383-1390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32637037

RESUMO

Glycosyltransferases (GTs) are responsible for transferring glycosyl moieties from activated sugar donors to certain acceptors, among which the GT1 family enzymes have been known for their outstanding glycosylation capacities toward diverse natural products, such as glycolipids, flavonoids and macrolides etc. However, there still lacks a systematic collation of this important family members. In this minireview, all the GT1 family sequences were phylogenetically analyzed, and the grouping of GT1 proteins exhibited a taxonomic life domain-dependent pattern, revealing many untapped clades of GTs. The further phylogenetic analysis of the characterized GTs facilitated the classification of substrates coverage of GT1 family enzymes from different life domains, whereby the GTs from bacteria can tolerate a wider spectrum of chemical skeletons as substrates, showing higher promiscuity than those from other domains. Furthermore, the sequence sizes of GTs from different domains were compared to understand their different substrates selectivity. Based on the multiple sequence alignments of 28 representative GT1 enzymes with crystal structures, two critical regions located in the N-terminal of GTs were identified, which were most variable among sequences from different taxonomic domains and essential for substrates binding and/or catalysis. The key roles of these two regions were validated by enumerating the influential residues that interacted with substrates in the representative structures from bacteria and plants. The atlas for GT1 family in terms of phylogeny, substrates selectivity, sequence length, and critical motifs provides the clues for the exploration of unknown GT1s and rational engineering of known enzymes, synthesizing novel promising glycoconjugates for pharmaceutical application.

20.
J Assist Reprod Genet ; 37(3): 549-557, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32152910

RESUMO

PURPOSE: To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and ß-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS). METHODS: An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and ß-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET). RESULTS: A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT. CONCLUSION: This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts.


Assuntos
Aneuploidia , Diagnóstico Pré-Implantação , Talassemia alfa/diagnóstico , Talassemia beta/diagnóstico , Aborto Espontâneo/genética , Aborto Espontâneo/patologia , Adulto , Blastocisto/metabolismo , Blastocisto/patologia , Transferência Embrionária/métodos , Feminino , Testes Genéticos/métodos , Humanos , Nascido Vivo , Oócitos/crescimento & desenvolvimento , Gravidez , Taxa de Gravidez , Talassemia alfa/genética , Talassemia alfa/patologia , Talassemia beta/genética , Talassemia beta/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...